Skripsi

SINTESIS DAN KARAKTERISASI HIDROKSIAPATIT [Ca₁₀(PO₄)₆(OH)₂] DARI BATU KAPUR DENGAN METODE SOL-GEL

FLORIAAN SAMUEL RUMENGAN H311 13 502

DEPARTEMEN KIMIA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

UNIVERSITAS HASANUDDIN

MAKASSAR

2017

SINTESIS DAN KARAKTERISASI HIDROKSIAPATIT [Ca₁₀(PO₄)₆(OH)₂]

DARI BATU KAPUR DENGAN METODE SOL-GEL

Laporan hasil penelitian ini diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains

Oleh :

FLORIAAN SAMUEL RUMENGAN H311 13 502

MAKASSAR

2017

LAPORAN HASIL PENELITIAN

SINTESIS DAN KARAKTERISASI HIDROKSIAPATIT [Ca10(PO4)6(OH)2] DARI BATU KAPUR DENGAN METODE SOL-GEL

Disusun dan diajukan oleh

FLORIAAN SAMUEL RUMENGAN H311 13 502

Laporan Hasil Penelitian ini telah diperiksa dan disetujui oleh :

Pembimbing Utama Dr. Indah Raya, M.Si

.

NIP. 19641125 199002 2 001

Pembimbing Pertama

Dr. Maming, M.Si NIP. 19631231 198903 1 031

Sebab Aku ini mengetahui rancangan-rancangan apa yang ada pada-Ku, mengenai kamu, demikianlah firman Tuhan, yaitu rancangan damai sejahtera dan bukan rancangan kecelakaan, untuk memberikan kepadamu hari depan yang penuh harapan.

Yeremia 29 : 11

Ia membuat segala sesuatu indah pada waktunya, bahkan Ia memberikan kekekalan dalam hati mereka. Tetapi manusia tidak dapat menyelami pekerjaan yang dilakukan Allah dari

awal sampai akhir

Pengkhotbah 3:11

PRAKATA

Puji dan syukur dipanjatkan kehadirat Tuhan Yang Maha Esa, yang telah melimpahkan hikmat, berkat, dan anugerah-Nya sehingga penulis dapat menyelesaikan skripsi ini yang berjudul "SINTESIS DAN KARAKTERISASI HIDROKSIAPATIT [Ca₁₀(PO₄)₆(OH)₂] DARI BATU KAPUR DENGAN METODE SOL-GEL".

Terwujudnya skripsi ini, tidak lepas dari berbagai kesulitan dan hambatan. Namun, hal ini dapat diatasi berkat bimbingan dan motivasi dari pihak-pihak yang membantu, baik secara materi maupun non materi. Oleh karena itu, penulis ingin mengucapkan terima kasih yang sebesar-besarnya serta penghargaan yang setinggi-tingginya, dengan rasa tulus dan ikhlas kepada :

- 1. Keluarga tercinta, untuk Papa (Sam Anton Rumengan) dan Mama (Telly Rumengan) yang telah menyayangi, mencintai, mendukung, bahkan selalu mendoakan penulis secara menyeluruh semenjak penulis di dalam kandungan sampai tumbuh menjadi dewasa. Terima kasih atas kerja keras kedua orang tuaku yang mencari nafkah untuk membiayai perkuliahan sehingga penulis dapat menyelesaikan jenjang pendidikan perguruan tinggi tanpa kekurangan sesuatu apapun. Untuk saudariku (Gloria), opa, oma serta om dan tante, terima kasih atas kasih saying, perhatian, dan motivasi yang sangat berarti dan tidak lupa buat semua keluarga besarku, terima kasih atas dukungan dan doanya.
- 2. **Dr. Indah Raya, M.Si** selaku pembimbing utama dan **Dr. Maming, M.Si** selaku pembimbing pertama yang telah berkenan meluangkan waktu dan

tenaganya dalam membimbing dan memberikan petunjuk yang begitu berharga dalam penyelesaian skripsi ini.

- 3. Prof. Dr. Nunuk Hariani S, MS, Dr. Nursiah La Nafie, M.Sc, Dr. Muhammad Zakir, Sci, dan Prof. Dr. Ahyar Ahmad selaku tim penguji yang selama ini memberikan saran dan kritikan yang luar biasa dalam penyusunan skripsi ini.
- 4. Dr. Indah Raya, M.Si dan Drs. Fredryk W. Mandey, M.Scselaku penasehat akademik yang selama ini senantiasa mengayomi saya dengan penuh dedikasi dalam mengarahkan bagaimana sistem akademik di kampus.
- Seluruh Dosen yang telah membagi ilmunya dan Staf Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin.
- Ka' Linda, ibu Tini, ka' Anti, ka' Fibi, pak Sugeng, pak Ikbal, dan Hanna selaku analis yang senantiasa memberi pengarahan yang tak pernah kenal lelah di laboratorium.
- 7. Prof. Dr. Dahlang, M.sc (Dosen Fisika), pak Taufik, pak Wayan, pak Pabbenteng, kak Bulqis dan kak Tanto, yang berkenan meluangkan waktunya dalam membantu saya dalam pengukuran XRD dan penggunaan tanur di Poltek Ujung Pandang.
- Analis Fisika Lab. Mikrostruktur UNM atas bantuannya dalam menganalisa sampel saya denga n SEM.
- Kak Ammang yang membantu dalam penyusunan gambar IR menggunakan aplikasi Origin Pro.8.

- 10. Orang yang saya kasihi dan cintai**Steffy Lumalan** yang senantiasa memberikan dukungan, motivasi, doa, dan yang telah menemani dalam menyelesaikan penelitianku.
- 11. Seluruh saudara-saudara sepelayanan di GMKI Komisariat FMIPA UNHAS yang senantiasa menyemangati dalam doa dan dukungan kepada penulis.
- 12. Teman-teman angkatanku yang luar biasa "**TITRASI 2013**" yang senantiasa membantu dan memotivasi kepada penulis.
- 13. Seluruh Keluarga Mahasiswa Kimia FMIPA angkatan 08, 09, 010, 011, 012, 014, 015, dan 016 yang telah banyak membantu dan memotivasi kepada penulis.
- 14. Teman-teman sepelayanan Gerakan Pemuda GPIB ImmanuelMakassar yang senantiasa mendoakan dan memotivasi penulis.
- 15. Kakak rohaniku, kak Minggus yang senantiasa menuntun, mendoakan, dan memotivasi penulis dalam penyelesaian skripsi ini.
- 16. Teman-teman KKN Gelombang 93 Kabupaten Soppeng, Kecamatan Liliriaja : Gandhy, Iwan, Fitri, Ullan, Dian, dan Masita yang telah memberi dukungan dan motivasi.
- 17. Serta ucapan terima kasih pula kepada pihak-pihak lain yang telah memberikan bantuan secara langsung maupun tidak langsung, yang tidak sempat kami sebutkan satu per satu disini.

Atas segala kebaikan yang telah diberikan oleh berbagai pihak, penulis mengucapkan banyak terima kasih, semoga Tuhan Yang Maha Esa membalas kebaikan yang berlipat ganda kepada mereka. Penulis sadar akan kekurangan dalam skripsi ini, baik materi maupun teknik penulisannya. Oleh karena itu, penulis mengharapkan saran dan kritik yang bersifat membangun.

Akhirnya, penulis berharap semoga skripsi ini dapat diaplikasikan dalam suatu penelitian yang memberikan manfaat dalam pengembangan wawasan bidang ilmu kimia secara umum serta sumbangan ilmu dalam memanfaatkan pengolahan bahan alam batu kapur sebagai bahan baku sumber kalsium untuk memproduksi biomaterial hidroksiapatit.

Penulis

2017

Abstrak

Batu kapur digunakan sebagai bahan baku untuk sintesis dan karakterisasi hidroksiapatit dengan metode sol-gel. Kalsinasi pada batu kapur, dilakukan pada suhu 1000°C selama 12, 16, dan 20 jam untuk mendapatkan senyawa CaO dengan kristalinitas yang tinggi. Suspensi CaO direaksikan dengan prekursor posfat H₃PO₄ dengan waktu pengadukan selama 1, 2, dan 3 jam, kemudian dikeringkan pada suhu 60°C selama 1 hari. Proses sinter terhadap hasil sintesis hidroksiapatit dilakukan pada suhu 800 dan 900°C selama 3 jam. Selanjutnya, dikarakterisasi dengan menggunakan XRD, FTIR, dan SEM. Analisis dengan menggunakan XRD menunjukkan probabilitas kemurnian hidroksiapatit tertinggi diperoleh pada waktu pengadukan selama 2 jam dengan suhu sinter 900°C yaitu 73,68421% dengan kristalinitas sebesar 90,867% serta rata-rata ukuran diameter kristal sebesar 23,35351 nm. Gugus-gugus fungsi yang diidentifikasi dengan FTIR, menunjukkan adanya gugus OH^{-} , CO_3^{2-} , dan PO_4^{3-} . Morfologi struktur hidroksiapatit yang dianalisis dengan SEM, menunjukkan adanya gumpalan dari permukaan hidroksiapatit serta aglomerasi dari setiap partikel dengan bentuk pori yang berukuran kecil.

Kata kunci : Batu kapur, FTIR, Hidroksiapatit, Metode Sol-Gel, SEM, XRD, XRF.

Abstract

Limestone was used as a raw material for synthesis and characterization of hydroxyapatite with sol-gel method. Calcination of limestone, was conducted at temperature of 1000°C for 12, 16, and 20 hours to obtain CaO compounds with high crystallinity. The CaO suspension was reacted with H₃PO₄ as phosphate precursors with stirring time for 1, 2, and 3 hours, then dried at 60°C for 1 day. Sintering of hydroxyapatite synthesis was conducted at temperature of 800 and 900°C for 3 hours. Furthermore, it was characterized using XRD, FTIR, and SEM. Analysis using XRD showed the highest probability of purity of hydroxyapatite obtained at the time of stirring for 2 hours with temperaturesintering of 900°C is 73,68421%, with crystallinity equal to 90,867% and average size of crystal diameter equal to 23,35351 nm. Functional groups were identified with FTIR, indicating the presence of OH⁻, CO₃²⁻, and PO₄³⁻ groups.The morphology of the hydroxyapatite structure was analyzed by SEM, showed clumps of the hydroxyapatite surface and the agglomeration of each particle with a small pore shape.

Key words : Limestone, FTIR, Hydroxyapatite, Sol-gel method, SEM, XRD, XRF

DAFTAR ISI

Halaman

PRAKATA	v
ABSTRAK	ix
ABSTRACT	Х
DAFTAR ISI	xi
DAFTAR GAMBAR	xii
DAFTAR TABEL	xvi
DAFTAR SIMBOL DAN SINGKATAN	XX
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Maksud dan Tujuan Penelitian	4
1.3.1 Maksud Penelitian	4
1.3.2 Tujuan Penelitian	4
1.4 Manfaat Penelitian	4
BAB II TINJAUAN PUSTAKA	5
2.1 Batu Kapur	5
2.2.1 Sifat-Sifat Fisik dan Kimia Batu Kapur	6
2.2 Hidroksiapatit	7
2.2.1 Struktur Kristal Hidroksiapatit	8
2.2.2 Sifat Kimia Kristal Hidroksiapatit	10
2.2.3 Sifat Mekanik Hidroksiapatit	11
2.3 Sintesis Hidroksiapatit	11

2.3	3.1 Sintesis Hidroksiapatit Metode Sol-Gel	12
2.3	3.2 Karakterisasi Material Hidroksiapatit	14
BAB III M	IETODE PENELITIAN	16
3.1	Bahan Penelitian	16
3.2	Alat Penelitian	16
3.3	Waktu dan Tempat Penelitian	16
3.4	Prosedur Kerja	17
3.4	.1 Analisis XRF dari Batu Kapur	17
3.4	.2 Kalsinasi Batu Kapur	17
3.4	.3 Sintesis Hidroksiapatit dengan Menggunakan Metode Sol-Gel	17
3.4	.4 Karakterisasi dengan XRD	18
3.4	.5 Karakterisasi dengan FTIR	18
3.4	.6 Karakterisasi dengan SEM	18
BAB IV H	IASIL DAN PEMBAHASAN	16
4.1	Karakterisasi Komposisi Batu Kapur dengan XRF	19
4.2	Kalsinasi Batu Kapur	20
4.3	Reaksi Suspensi CaO dengan Prekursor Posfat	23
4.3	.1 Karakterisasi Hasil Sinter dengan XRD	24
4.3	2.2 Karakterisasi dengan FTIR	34
4.3	.3 Karakterisasi Hasil Sinter dengan SEM	37
BAB V K	ESIMPULAN DAN SARAN	40
5.1	KESIMPULAN	40
5.2	SARAN	40
DAFTAR PUSTAKA 41		
LAMPIRA	AN	46

DAFTAR GAMBAR

Ga	mbar	Halaman
1.	Batu Kapur	5
2.	Struktur Kimia Hidroksiapatit	8
3.	Struktur Heksagonal Hidroksiapatit	9
4.	Struktur Monoklinik Hidroksiapatit	9
5.	Morfologi Analisis Produk HAp dengan Metode Sol-Gel	14
6.	Pola difraksi sinar-X dari hasil kalsinasi batu kapur pada temperatur	
	1000°C selama 12, 16, dan 20 jam	21
7. 1	Pola difraksi sinar-X dari hidroksiapatit untuk waktu pengadukan	
	1 jam dengan suhu sinter 800 dan 900 °C	24
8. 1	Pola difraksi sinar-X dari hidroksiapatit untuk waktu pengadukan	
	2 jam dengan suhu sinter 800 dan 900 °C	. 26
9.	Pola difraksi sinar-X dari hidroksiapatit untuk waktu pengadukan	
	3 jam dengan suhu sinter 800 dan 900 °C	. 27
10.	Persentase probabilitas fase sampel terhadap waktu pengadukan	
	untuk suhu sinter 800°C dan 900°C	. 28
11.	Persentase kristalinitas fase sampel HAp terhadap waktu pengadukan	n
	dan suhu sinter	. 30
12.	Pengaruh diameter kisi kristal HAp terhadap waktu pengadukan dan	
	suhu sinter	. 32
13.	Spektrum FTIR HAp dengan waktu pengadukan 1 jam dengan suhu	
	sinter 800 dan 900°C	33

14.	Spektrum FTIR HAp dengan waktu pengadukan 2 jam dengan suhu	
	sinter 800 dan 900°C	34
15.	Spektrum FTIR HAp dengan waktu pengadukan 3 jam dengan suhu	
	sinter 800 dan 900°C	35
16.	Morfologi HAp hasil sintesis dengan perbesaran 500x dan	
	perbesaran 5000x	37
17.	Hasil EDS HAp hasil sintesis	38

DAFTAR TABEL

Tabel		Halaman
1.	Perbedaan metode-metode sintesis hidroksiapatit	11
2.	Persentase kristalinitas hasil kalsinasi CaO	22
3.	Hasil perhitungan persentase kristalinitas HAp sintesis	30
4.	Hasil perhitungan diameter kisi kristal HAp hasil sintesis	31
5.	Komposisi atom dan senyawa HAp hasil sintesis	38

DAFTAR LAMPIRAN

La	mpiran	Halaman
1.	Bagan kerja analisis XRF batu kapur	46
2.	Bagan kerja kalsinasi XRF batu kapur	46
3.	Bagan kerja sintesis HAp dengan menggunakan metode sol-gel	47
4.	Karakterisasi HAp hasil sintesis dengan XRD	48
5.	Karakterisasi HAp hasil sintesis dengan FTIR	48
6.	Karakterisasi HAp hasil sintesis dengan SEM	49
7.	Perhitungan penentuan massa CaO dan volume prekursor posfat	
	untuk sintesis HAp	50
8.	Data JCPDS 82-1691 untuk CaO	52
9.	Data JCPDS 24-0033 untuk Ca ₁₀ (PO ₄) ₆ (OH) ₂	53
10.	Data JCPDS 09-0169 untuk β-Ca ₃ (PO ₄) ₂	54
11.	Data JCPDS 35-0180 untuk Ca ₁₀ (PO ₄) ₆ CO ₃	55
12.	Data AC 250-253 untuk Ca ₁₈ Mn ₂ H ₂ (PO ₄) ₁₄	56
13.	Perhitungan persentase kristalinitas CaO dari hasil kalsinasi batu	
	kapur selama 12 jam dengan suhu 1000 °C	58
14.	Perhitungan persentase kristalinitas CaO dari hasil kalsinasi batu	
	kapur selama 16 jam dengan suhu 1000 °C	59
15.	Perhitungan persentase kristalinitas CaO dari hasil kalsinasi batu	
	kapur selama 20 jam dengan suhu 1000 $^{\circ}$ C	60
16	Perhitungan probabilitas fase sampel waktu pengadukan 1 jam denga	an suhu
	sinter 800 °C	

17.	Perhitungan probabilitas fase sampel waktu pengadukan 1 jam dengan	
	suhu sinter 900 °C	64
18.	Perhitungan probabilitas fase sampel waktu pengadukan	
	2jam dengan suhu sinter 800 °C	67
19.	Perhitungan probabilitas fase sampel waktu pengadukan	
	2jam dengan suhu sinter 900 °C	69
20.	Perhitungan probabilitas fase sampel waktu pengadukan	
	3jam dengan suhu sinter 800 °C	72
21.	Perhitungan probabilitas fase sampel waktu pengadukan	
	3jam dengan suhu sinter 900 °C	75
22.	Perhitungan persentase kristalinitas HAp untuk waktu	
	pengadukan 1 jam dengan suhu sinter 800 $^{\circ}$ C	78
23.	Perhitungan persentase kristalinitas HAp untuk waktu	
	pengadukan 1 jam dengan suhu sinter 900 $^{\circ}$ C	78
24.	Perhitungan persentase kristalinitas HAp untuk waktu	
	pengadukan 2 jam dengan suhu sinter 800 $^{\circ}$ C	79
25.	Perhitungan persentase kristalinitas HAp untuk waktu	
	pengadukan 2 jam dengan suhu sinter 900 °C	79
26.	Perhitungan persentase kristalinitas HAp untuk waktu	
	pengadukan 3 jam dengan suhu sinter 800 $^{\circ}$ C	80
27.	Perhitungan persentase kristalinitas HAp untuk waktu	
	pengadukan 3 jam dengan suhu sinter 900 °C	80
28.	Perhitungan ukuran diameter kisi kristal HAp untuk waktu	
	pengadukan 1 jam dengan suhu sinter 800 °C	81

29.	Perhitungan ukuran diameter kisi kristal HAp untuk waktu	
	pengadukan 1 jam dengan suhu sinter 900 °C	84
30.	Perhitungan ukuran diameter kisi kristal HAp untuk waktu	
	pengadukan 2 jam dengan suhu sinter 800 °C	87
31.	Perhitungan ukuran diameter kisi kristal HAp untuk waktu	
	pengadukan 2 jam dengan suhu sinter 900 °C	90
32.	Perhitungan ukuran diameter kisi kristal HAp untuk waktu	
	pengadukan 3 jam dengan suhu sinter 800 °C	93
33.	Perhitungan ukuran diameter kisi kristal HAp untuk waktu	
	pengadukan 3 jam dengan suhu sinter 900 °C	96
34.	Hasil XRD HAp untuk waktu pengadukan 1 jam dengan suhu	
	sinter 800 °C	99
35.	Hasil XRD HAp untuk waktu pengadukan 1 jam dengan suhu	
	sinter 900 °C	101
36.	Hasil XRD HAp untuk waktu pengadukan 2 jam dengan suhu	
	sinter 800 °C	104
37.	Hasil XRD HAp untuk waktu pengadukan 2 jam dengan suhu	
	sinter 900 °C	107
38.	Hasil XRD HAp untuk waktu pengadukan 3 jam dengan suhu	
	sinter 800 °C	110
39.	Hasil XRD HAp untuk waktu pengadukan 3 jam dengan suhu	
	sinter 900 °C	113
40.	Hasil FTIR HAp untuk waktu pengadukan 1 jam dengan suhu	
	sinter 800 °C	116

41.	Hasil FTIR HAp untuk waktu pengadukan 1 jam dengan suhu	
	sinter 900 °C	117
42.	Hasil FTIR HAp untuk waktu pengadukan 2 jam dengan suhu	
	sinter 800 °C	118
43.	Hasil FTIR HAp untuk waktu pengadukan 2 jam dengan suhu	
	sinter 900 °C	119
44.	Hasil FTIR HAp untuk waktu pengadukan 3 jam dengan suhu	
	sinter 800 °C	120
45.	Hasil FTIR HAp untuk waktu pengadukan 3 jam dengan suhu	
	sinter 900 °C	121
46.	Hasil SEM HAp hasil sintesis	122

DAFTAR SIMBOL DAN SINGKATAN

Å	= Angstrom
ß-TCP	= β-trikalsium posfat
AC	= Acta Crystallographica
AKA	= Karbonat Apatit
ВТ	= Bujur Timur
Ca/P	= Rasio Perbandingan Kalsium dan Posfat
EDS	= Energy Dispersive Spectroscopy
FTIR	= Fourier Transformer Infra Red
FWHM	= Full Width Half Maximum
НАр	= Hidroksiapatit
JCPDS	= Joint Committee on Powder Diffraction Standards
kV	= Kilovolt
LS	= Lintang Selatan
MW	= Mangan Whitlockite
nm	= nanometer
P21/b	= Space Group Symmetry Struktur Monoklinik Hidroksiapatit
P6 ₃ /m	= Space Group Symmetry Struktur Heksagonal Hidroksiapatit
рН	= Power of Hydrogen
rpm	= Rotation per Minute
SEM	= Scanning Electron Microscopy
XRD	= X-Ray Diffractometer
XRF	= X-Ray Fluorescence

BAB I

PENDAHULUAN

1.1 Latar Belakang

Indonesia sebagai negara yang kaya akan hasil alam memiliki keanekaragaman di berbagai sektor, terutama dalam kelimpahannya di bidang industri yang menggunakan bermacam-macam sumber daya alam. Salah satu sumber daya alam yang dihasilkan adalah batu kapur (*limestone*) dengan kandungan $CaCO_3$ yang besar (Lukman, dkk., 2012).

Potensi terhadap produksi batu kapur di Indonesia sangat besar dan hampir merata di seluruh Indonesia terutama dijadikan sebagai bahan galian industri (Shubri dan Armin, 2014).Data mengenai jumlah cadangan batu kapur di Indonesia belum ada, namun secara umum jumlah batu kapur Indonesia mencapai 28,678 milyar ton. Statistik menunjukkan sektor industri dalam penggunaan batu kapur cenderung meningkat yakni 10,45% setiap tahun. Di Sulawesi Selatan, potensi kekayaan batu kapur diperlihatkan dengan banyaknya pabrik industri seperti PT. Semen Tonasa dan PT. Semen Bosowa. Hal ini terjadi karena batu kapur digunakan sebagai bahan utama dan bahan non utama dalam berbagai industri (Pusat Penelitian dan Pengembangan Teknologi Mineral, 2009).

Bentuk kalsium dalam batu kapur sebagian besar terdapat sebagai kalsium karbonat (CaCO₃).Batu kapur memilikimassa jenis 2,6 – 2,8 g/cm³ dan dalam keadaan murni berbentuk kristal kalsit, terdiri atas CaCO₃(Oates,1998). Kandungan CaCO₃ dalam batu kapur mencapai lebih dari 90% dan sisanya adalah zat-zat lainnya. Kandungan CaCO₃ merupakan bahan dasar dalam menghasilkan hidroksiapatit. Kalsium karbonat (CaCO₃) dapat diolah lebih lanjut menjadi hidroksiapatit (HAp) sebagai komponen anorganik utama pada tulang dan gigi. Secara umum, produk hidroksiapatit sebagian besar diperoleh secara komersial melalui impor dari negara lain sehingga membutuhkan biaya yang cukup besar (Kehoe, 2008).

Hidroksiapatit hasil sintetis dikenal sebagai salah satu bahan implan yang penting karena mempunyai sifat yang bioaktif, biokompatibel, dan osteokonduktif yang sama dengan mineral tulang alami, sehingga bisa digunakan sebagai pengganti jaringan keras manusia. HAp hasil sintesis dengan tingkat kemurnian yang tinggi tidak hanya diperoleh melalui reaksi senyawa-senyawa sintesis, tetapi dapat juga diperoleh dengan mereaksikan senyawa sintesis dengan senyawa alami. Selain itu, waktu pengadukan dan suhu sinter, juga berpengaruh terhadap probabilitas kemurnian HAp hasil sintesis (Muntamah, 2011).

Sintesis HAp di berbagai bidang telah banyak dilakukan diantaranya, Yahya, (2014) mensintesis HAp dari cangkang kerang darah (*Anadara granosa*) dengan probabilitas fase sampel HAp sebesar 76,87%. Rosmawati, (2014) berhasil mensintesis HAp dari limbah cangkang telur ayam dengan probabilitas kemurnian fase HAp yaitu 80,7073%. Raya dkk., (2015) berhasil mensintesis HAp dari cangkang kepiting (*Portunus pelagicus*) dengan probabilitas fase dari hasil sintesis HAp sebesar 80,38%. Maming dkk., (2015) juga berhasil mensintesis HAp dari limbah cangkang telur ayam dengan tingkat probabilitas HAp yang diperoleh dari kalsinasi CaO yaitu 71,04%. Untuk sampel cangkang secara keseluruhan dari beberapa peneliti, diperoleh suhu sinter optimum pada 800°C. Selain itu, Ningsih dkk., (2014) berhasil mensintesis HAp dari cangkang

2

kerang kepah (*Polymesoda erosa*) dengan parameter waktu pengadukan dan diperoleh pengadukan optimum selama 90 menit dengan probabilitas fase HAp sebesar 71%. Begitu banyak jenis cangkang yang telah dijadikan sampel dalam sintesis HAp. Namun, untuk pemanfaatan batu kapur sebagai bahan dasar sintesis HAp masih belum pernah dilakukan, padahal sumber batu kapur sangat melimpah dan kandungan kalsiumnya sangat tinggi. Sehingga, pada penelitian ini digunakan batu kapur sebagai prekursor HAp dengan parameter waktu pengadukan dan suhu sinter.

Selain itu, terdapat berbagai metode sintesis HAp antara lain, metode basah pengendapan (presipitasi), hidrotermal, emulsi beragam, alkoksida, fluks dan sol-gel (Suryadi, 2011). Metode sol-gel dilakukan pada penelitian ini karena metode ini merupakan salah satu metode yang mampu meningkatkan sifat kimia dari HAp dan juga memiliki kelebihan dalam mengatur komposisi, sintesis yang dapat dilakukan pada suhu yang rendah, serta menghasilkan lapisan yang homogen, murni dan efektif untuk sintesis hidroksiapatit fasa nano (Atia, dkk., 2012).

Di samping itu, hasil sintesis HAp dapat diproduksi dan diperoleh dengan biaya rendah namun memiliki kualitas yang sama dengan hidroksiapatit sintesis komersial produk mancanegara (Muntamah, 2011). Oleh karena itu, pada penelitian ini dilakukan sintesis HAp dari batu kapur dengan metode sol-gel.

1.2 Rumusan Masalah

Adapun masalah yang dapat dirumuskan pada penelitian ini yaitu:

- 1. Bagaimana potensi batu kapur sebagai bahan baku sintesis HAp?
- 2. Bagaimana pengaruh waktu pengadukan pada sintesis HAp dari batu kapur?

- 3. bagaimana pengaruh suhu sinter terhadap sintesis HAp dari batu kapur,
- 4. bagaimana probabilitas kemurnian fase HAp yang disintesis dari batu kapur.

1.3 Maksud dan Tujuan Penelitian

1.3.1 Maksud Penelitian

Maksud dari penelitian ini adalah untuk mengetahui dan mempelajari karakteristik HAp yang disintesis dari batu kapur (*limestone*) dengan metode sol-gel.

1.3.2 Tujuan Penelitian

Adapun penelitian ini bertujuan untuk:

- 1. mengetahui potensi batu kapur sebagai bahan baku sintesis HAp,
- menentukan pengaruh waktu pengadukan optimum terhadap HAp hasil sintesis dari batu kapur,
- menentukan pengaruh suhu sinter optimum terhadap HAp hasil sintesis dari batu kapur,
- 4. menentukan probabilitas kemurnian fase HApyang disintesis dari batu kapur.

1.4 Manfaat Penelitian

Adapun manfaat dari penelitian ini antara lain:

- 1. sebagai upaya pemanfaatan yang lebih efektif pada batu kapur dalam peningkatan kesehatan terhadap tulang dan gigi manusia,
- 2. memperoleh suhu sinter yang optimum pada pembentukan HAp,
- 3. memperoleh waktu pengadukan yang optimum dalam pembentukan HAp,
- 4. memperoleh probabilitas kemurnian pada fase hidroksiapatit sehingga dapat dikembangkan dalam memproduksi produk-produk di bidang kesehatan.

BAB II

TINJAUAN PUSTAKA

2.1 Batu Kapur

Batu kapur merupakan bebatuan yang termasuk dalam kategori batuan sedimen karena terbentuk dari proses sedimentasi alam, yang mengandung senyawa kalsium oksida (CaO) (Zuraidah, 2006). Batuan ini dijadikan sebagai hasil penumpukan dan sedimentasi ribuan tahun lalu sehingga membentuk bebatuan masif yang berwarna putih kekuningan hingga kecoklatan. Mineral murni dari batu kapur mengandung CaCO₃ sebagai kalsit (*calcite*) (Nukman, 2005).

Gambar 1. Batu Kapur (Limestone) (Negara, dkk., 2010)

Pemanfaatan batu kapur (*limestone*) saat ini telah mencakup berbagai sektor yang didasarkan pada sifat-sifat fisik dan kimianya. Pemanfaatan tersebut diantaranya merupakan bahan baku penting yang digunakan dalam berbagai industri kertas, industri cat, dan industri semen. Selain itu, dapat juga digunakan sebagai uji kalsium untuk tulang dan gigi, bahan bangunan, bahanlapisan pondasi pengerasan jalan, campuran aspal, disektor pertanian, serta pembuatan karbit (Hamimu, dkk.,2012).

2.1.1 Sifat-Sifat Fisik dan Kimia Batu Kapur

MenurutVeorhoef (1995) bahwa batu kapur memiliki sifat-sifat fisik dan kimia, diantaranya yaitu :

- a. warna, dipengaruhi oleh unsur-unsur pengotornya yaitu mulai dari yang berwarna putih susu, abu-abu muda, coklat bahkan hitam. Warna kemerah-merahan biasanya disebabkan oleh adanya unsur mangan dan warna kehitam-hitaman disebabkan oleh adanya unsur organik,
- b. *specific gravity*, merupakan perbandingan antara massa material kering yang volumenya sama dengan volume bahan dalam keadaan jenuh pada suhu tertentu,
- c. kerapatan, merupakan rasio atau perbandingan antara massa material dengan volume material tersebut. Kerapatan material ditentukan oleh massa jenis rata-rata dari mineral penyusun dan kemungkinan adanya pori antar butiran. Semakin rapat butiran suatu batuan, maka akan semakin tinggi kerapatannya. Oleh karena itu, kerapatan material dipengaruhi oleh ukuran butir,
- d. kadar air, merupakan rasio atau perbandingan massa air dalam material dengan massa butirannya,
- e. angka pori,didefinisikan sebagai rasio atau perbandingan antara volume void dari suatu material atau bahan dengan volume padatan dari bahan,
- f. derajat kejenuhan, merupakan rasio antara volume air dan volume void dalam material,
- g. kekerasan, merupakan ketahanan atau kekuatan yang dimiliki suatu material untuk tidak hancur oleh adanya pengaruh mekanis seperti tumbukan dan benturan,

h. porositas merupakan rasio atau perbandingan antara volume void dengan volume bahan seluruhnya.

2.2Hidroksiapatit

Hidroksiapatit adalah sebuah molekul kristalin yang intinya tersusun dari posfor dan kalsium dengan rumus molekul $Ca_{10}(PO_4)_6(OH)_2$. Senyawa ini menempati porsi 65% dari fraksi mineral yang ada di dalam tulang manusia. Material ini juga terdapat pada struktur gigi manusia terutama di dalam dentin dan enamel (Petit, 1999).

Kristal apatit banyak mengandung gugus karbon dalam bentuk karbonat. Hidroksiapatit dengan rumus kimia $Ca_{10}(PO_4)_6(OH)_2$ merupakan salah satu bagian dari mineral apatit (M₁₀(ZO₄)₆X₂). Senyawa ini sangat stabil sehingga diimplankan sebagai pengisi gigi (*filler*) (Sasikumar dan Vijayaraghavan, 2006). Pada struktur hidroksiapatit, karbonat akan menggantikan ion OH⁻ sehingga membentuk kristal apatit karbonat (tipe A), dan bila karbonat menggantikan ion PO₄³⁻ akan terbentuk kristal apatit karbonat (tipe B). Pada umumnya, kristal apatit karbonat (tipe B) terbentuk apabila presipitasi dilakukan dalam keadaan temperatur yang rendah, sedangkan apatit yang dipresipitasi dalam keadaan temperatur yang tinggi akan menghasilkan kristal apatit karbonat (tipe A) (Riyani, dkk., 2005).

Jenis senyawa apatit lainnya dapat diperoleh dengan mengganti elemenelemen pada bagian M, Z, dan X. M dapat ditempati oleh unsur-unsur Ca, Mg, Sr, Ba, Cd, Pb. Z dapat ditempati oleh unsur-unsur P, V, As, S, Si, Ge, dan gugus fungsi $CO_3^{2^-}$. X dapat ditempati oleh unsur-unsur F, Cl, O, Br, senyawa hidroksil, serta gugus fungsi $CO_3^{2^-}$ (Vazquez, 2005). Gambar 2. Struktur Kimia Hidroksiapatit (Yessy dan Basril, 2011)

2.2.1 Struktur Kristal Hidroksiapatit

Pada dasarnya, hidroksiapatit memiliki 2 struktur kristal yang berbeda yaitu monoklinik dan heksagonal. Hidroksiapatit memiliki berat mencapai 69% dari berat tulang alami dan memiliki struktur heksagonal yang merupakan senyawa paling stabil dalam tubuh serta di udara kering hingga suhu 1200°C (Farzadi, dkk., 2011). Hidroksiapatit juga merupakan senyawa kalsium posfat dengan rasio Ca/P sekitar 1,67. (Vazquez, dkk., 2005).

Pada rasio ini, struktur hidroksiapatit memiliki stabilitas yang baik pada struktur kristal monoklinik karena diperoleh pada kondisi murni dan pada komposisi stoikiometri. Hidroksiapatit yang terdapat dalam gigi dan tulang serta mineral hidroksiapatit memiliki struktur yang heksagonal, kecuali pada enamel gigi yang memiliki struktur monoklinik (Narasaraju dan Phebe, 1996) sedangkan struktur heksagonal pada umumnya diperoleh dari sintesis hidroksiapatit yang tidak stoikiometri (Suryadi, 2011). Akan tetapi, struktur heksagonal pada kristal hidroksiapatit dapat diperoleh pada kondisi stoikiometri jika memiliki susunan OH⁻ yang tidak teratur (Corno, dkk., 2006).

Struktur kristal heksagonal mempunyai parameter kisi a = b = 9,4225 Å, c = 6,8850 Å dan γ = 120° (Manafi dan Joughehdoust, 2009). Struktur dengan parameter kisi ini memiliki *space group symmetry* P6₃/m dan memiliki nilai kecocokan nilai (hkl) indeks miller berdasarkan data JCPDS HAp, serta terdiri atas susunan gugus PO₄ tetrahedral yang diikat oleh ion-ion Ca. Ion-ion Ca berada pada 2 posisi yang berbeda yakni pada posisi kolom sejajar (Ca₁) dan posisi segitiga sama sisi (Ca₂) yang berbeda pada pusat sumbu putar. Susunan OH membentuk kolom dan berada pada sumbu putar, juga membentuk susunan demikian dengan OH yang terdekat (Corno, dkk., 2006).

Gambar 3. Struktur Heksagonal Hidroksiapatit (Corno dkk., 2006)

Struktur monoklinik juga terdapat pada kondisi yang benar-benar stoikiometri. Struktur ini adalah struktur yang paling teratur dan stabil secara termodinamika bahkan pada suhu ruang sekalipun. Struktur monoklinik ditemukan pertama kali dari proses pengubahan kristal tunggal *chlorapatite* menjadi kristal tunggalhidroksiapatit dengan memaparkannya pada uap air bersuhu 1200°C. Hidroksiapatit pada struktur monoklinik memiliki *space group symmetry* P2₁/b dan parameter kisi a = 9.421 Å, b = 2a, c = 6.881 Å, dan γ = 120°. Struktur monoklinik disebabkan oleh susunan OH yang membentuk urutan OH⁻ OH⁻OH⁻ yang membuat parameter kisi b menjadi 2 kali a (Corno, dkk., 2006).

Gambar 4. Struktur Monoklinik Hidroksiapatit (Corno, dkk., 2006)

2.2.2 Sifat Kimia Kristal Hidroksiapatit

Hidroksiapatit memiliki sifat kimia yang penting yaitu biokompatibel, bioaktif, dan *bioresorbable*. Sifat biokompatibel dalam material hidroksiapatit tidak menyebabkan terjadinya reaksi penolakan dari sistem kekebalan tubuh manusia karena dianggap sebagai benda asing. Sifat bioaktif pada material hidroksiapatit akan membantu proses pembentukan sebuah lapisan permukaan apatit biologis sebelum berkontak langsung dengan jaringan yang mengakibatkan pembentukan sebuah ikatan kimia langsung ke tulang. Sifat *bioresorbable*pada material hidroksiapatit akan membuat jaringan yang baru terbentuk tumbuh pada sembarang permukaan yang tidak beraturan, namun tidak harus berkontak langsung dengan permukaan material (Dorozhkin, 2010).

Sebagai material bioaktif, hidroksiapatit juga sangat baik digunakan sebagai pelapis pada implantasi komposit. Bioaktif hidroksiapatit mempunyai kesamaan dalam hal struktur dan komposisi dengan komponen anorganik dari jaringan keras pada tubuh manusia seperti material pada tulang dan gigi (Pal, dkk., 2005; Deptula, dkk., 2006; Sasikumar dan Vijayaraghavan, 2006). Hidroksiapatit akan membentuk ikatan langsung dengan jaringan pada tulang melalui proses enkapsulasi fibrin (Song, dkk., 2003).

Senyawa hidroksiapatit $Ca_{10}(PO_4)_6(OH)_2$ merupakan senyawa kalsium pospat yang memiliki kandungan material keramik bioaktif dengan bioafinitas tinggi serta material keramik bioaktif ini dapat disintesis dan diimplankan ke dalam tubuh manusia (Arrafiqie, dkk., 2016). Untuk dapat diimplankan ke dalam tubuh manusia, senyawa ini harus memenuhi syarat medis yang bersifat bioaktif, biokompatibel, dan tidak beracun (Dahlan, dkk., 2009 dalam Muntanah, 2011).

2.2.3 Sifat Mekanik Hidroksiapatit

Sifat mekanik hidroksiapatit yang disintesis bervariasi, hal ini dikarenakan adanya variasi struktur seperti pengaruh porositas, ukuran butir, adanya pengotor, dan proses pembuatan hidroksiapatit yang bervariasi. Rasio perbandingan Ca/P juga berpengaruh terhadap sifat mekanik hidroksiapatit. Semakin besar perbandingan rasio Ca/P maka kekuatannya akan semakin meningkat, namun perbandingan tersebut akan mencapai maksium pada Ca/P yaitu 1,67. Sifat mekanik hidroksiapatit akan turun apabila perbandingan Ca/P lebih dari 1,67 atau kurang dari 1,67 (Suryadi, 2011). Jika konsentrasi masing-masing komponen penyusun senyawa hidroksiapatit yang disintesis diketahui kadarnya, maka mudah melakukan pendekatan dengan menggunakan rasio ini (Rocha, dkk., 2005).

2.3 Sintesis Hidroksiapatit

Hidroksiapatit dapat dilakukan melalui berbagai cara. Metode-metode tersebut pada dasarnya dapat menghasilkan hidroksiapatit dalam bentuk padatan dan kristalin, atau senyawa lain dengan rasio Ca/P tertentu (Manafi, 2009). Tabel 1 merupakan data mengenai perbedaan-perbedaan mendasar dari berbagai jenis metode hidroksiapatit (HAp) (Mulyaningsih, 2007):

Tuber 1. 1 er beduum Metode Metode Bintesis Hidronshuputt			
Metode Hidroksiapatit	Jenis Reaksi	Wujud Produk	
Basah Pengendapan (Presipitasi)	Reaksi cairan (dari larutan menjadi padatan)	Serbuk HAp dengan sedikit kristal atau amorf	
Emulsi (Kering)	Reaksi padat (dari padatan menjadi padatan)	Serbuk HAp (butir halus)	

Tabel 1. Perbedaan Metode-Metode Sintesis Hidroksiapatit

Hidrotermal	Reaksi hidrotermal (dari larutan menjadi padatan)	HAp dengan kristal tunggal
Alkoksida	Reaksi hidrolisa (dari	HAp dengan kristal tunggal
Tikoksida	larutan menjadi padatan)	untuk (<i>thin film</i>)
Fluks	Reaksi peleburan garam	HAp dengan kristal tunggal
	(dari pelelehan menjadi	yang mengandung unsur lain,
	padatan)	seperti boronapatit,
		fluorapatit, dan kloroapatit
Sol-Gel	Reaksi cairan (dari larutan	Serbuk HAp yang relatif
	menjadi padatan)	homogen dan ukuran yang
		sangat kecil

2.3.1 Sintesis Hidroksiapatit Metode Sol-Gel.

Metode sol-gel merupakan metode yang efektif untuk sintesis hidroksiapatit fasa nano, karena diperlukan kontrol terhadap beberapa faktor yang memengaruhi seperti pH dan temperatur. Metode ini difokuskan pada suatu pencampuran pada tingkat molekul dari kalsium dan posfor yang mampu meningkatkan sifat kimia dari hidroksiapatit yang dihasilkan. Hanya sedikit penelitian yang dilaporkan mengenai proses sol-gel untuk material hidroksiapatit (Jillavenkatesa dan Condrate, 1998). Telah dilaporkan bahwa material-material hidroksiapatit yang disintesis dengan metode sol-gel yang efisien untuk meningkatkan kontak dan stabilitas pada antarmuka tulang alami atau buatan di dalam lingkungan *in vitro* dan *in vivo*(Li dan Groot, 1994).

Sejumlah kombinasi prekursor kalsium dan posfor dipergunakan untuk sintesis hidroksiapatit menggunakan proses sol-gel. Aktivitas kimia dan temperatur yang diperlukan untuk membentuk struktur apatit, sangat bergantung pada sifat kimia dari masing-masing prekursor. Balamurugan dkk., (2006)menggunakan Ca(NO₃)₂.4H₂O dantrietil posfat sebagai prekursor untuk kalsium dan posfor, ketika rasio stoikiometri Ca/P dipertahankan pada 1.67. Serbuk hidroksiapatit yang telah disintesis dikeringkan dan disinter pada temperatur berbeda hingga mencapai temperatur 900 °C. Vijayalakshmi dkk., (2006) telah mensintesis serbuk hidroksiapatit monokristalin dari kalsium asetat dan trietilposfat di dalam media air dan etanol. Peningkatan lebih lanjut dalam temperatur hingga mencapai 900 °C menghasilkan fasa hidroksiapatit yang murni dengan kristalinitas yang lebih baik. Kristalinitas ditingkatkan dengan menaikkan temperatur hingga 1100 °C (Suryadi, 2011).

Proses reaksi yang terlibat dalam sintesis hidroksiapatit, antara lain (Trianita, 2012):

 Reaksi pembentukan antara kalsium oksida (CaO) dan kalsium hidroksida (Ca(OH)₂)

$$CaCO_3 \longrightarrow CaO + CO_2 \uparrow$$
 (1)

$$CaO + H_2O \longrightarrow Ca(OH)_2$$
 (2)

2. Reaksi ionisasi pada asam posfat (H₃PO₄)

$$H_3PO_4 \longrightarrow H^+ + H_2PO_4^-$$
 (3)

$$H_2PO_4 \longrightarrow H^+ + HPO_4^{2-}$$
 (4)

$$HPO_4^{2-} H^+ \rightarrow PO_4^{3-}$$
(5)

3. Reaksi pembentukan hidroksiapatit

 $10Ca^{2+} + 6PO_4^{3-} + 2OH^{-}Ca_{10}(PO_4)_6(OH)_2$

4. Reaksi lengkap yang diperoleh

$$10Ca(OH)_2 + 6H_3PO_4 \longrightarrow Ca_{10}(PO_4)_6(OH)_2 + 18H_2O \qquad (6)$$

$$6H_3PO_4 + 10CaO \longrightarrow Ca_{10}(PO_4)_6(OH)_2 + 8H_2O$$
(7)

Metode sol-gel yang digunakan untuk menghasilkan hidroksiapatit memiliki tingkat kemurnian yang tinggi, komposisi yang homogen, dan ukuran yang lebih kecil (Vazquez, dkk., 2005).

Gambar 5. Morfologi Analisis Produk HAp dengan Metode Sol-Gel (Hidayat,2013)

2.3.2 Karakterisasi Material Hidroksiapatit

Pengujian karakterisasi terhadap material ini dilakukan untuk mengidentifikasi dan memastikan material hidroksiapatit yang dihasilkan. Beberapa teknik karakterisasi digunakan untuk mengetahui karakteristik dari material yang dihasilkan pada penelitian ini. Beberapa teknik pengujian yang digunakan yaitu *X-Ray Diffractometer* (XRD), *Fourier Transform Infra Red* (FTIR), dan *Scanning Electron Microscopy* (SEM).

Pengujian komposisi senyawa melalui *X-Ray Diffractometer* (XRD) dilakukan terhadap hasil proses pengeringan dan hasil sinter (Suryadi, 2011) serta penentuan fasa dalam suatu sampel kristal (Hidayat, 2013). XRD digunakan untuk menentukan sistem kristal, parameter kisi, kristalinitas, dan fasa suatu sampel. Kristalinitas menyatakan kandungan kristalin dalam suatu bahan dengan membandingkan luas kurva kristal dengan total luas amorf dan kristal. Persentase kristalinitas meningkat seiring dengan kenaikan suhu pemanasan. Suhu pemanasan yang semakin tinggi menyebabkan susunan atom semakin teratur sehingga semakin banyak terbentuk fasa kristalin (Cullity dan Stock, 2001).Hidayat (2013) melaporkan bahwa hasil XRD semua sampel dalam penelitian ini memperlihatkan terbentuknya hidroksiapatit dari reaksi antara asam fosfat dan bahan awal CaO maupun Ca(OH)₂.

Analisis FTIR pada hasil sintesis hidroksiapatit digunakan untuk mengidentifikasi gugus fungsi OH^- , PO_4^{3-} , dan CO_3^{2-} . Ketajaman puncak-puncak serapan gugus posfat sangat berpengaruh dari konsentrasi pereaksi yang digunakan saat mensintesis hidroksiapatit. Selain itu, perbedaan suhu kalsinasi juga memengaruhi intensitas pita serapan. Suhu yang semakin tinggi akan meningkatkan eliminasi CO_3^{2-} (Fifia, 2008). Gugus fungsi OH sangat khas untuk hidroksiapatit sehingga keberadaan pita serapan gugus hidroksil serta posfat menunjukkan bahwa hidroksiapatit telah terbentuk dalam sampel (Hidayat, 2013). Senyawa HAp dapat dikenali dari pita serapan gugus hidroksil dan posfat, sedangkan pada apatit karbonat memberikan pita serapan tambahan untuk gugus karbonat (Nurlaela, 2009).

Karakteristik kristal hidroksiapatit dapat ditinjau kembali dengan memperhatikan dan meninjau morfologi kristal hidroksiapatit melalui uji SEM. Uji ini dimungkinkan akan dapat diperoleh partikel yang benar-benar terpisah satu sama lain (Suryadi, 2011).

BAB III

METODE PENELITIAN

3.1 Bahan Penelitian

Bahan-bahan yang digunakan dalam penelitian ini yaitu batu kapur di Kabupaten Pangkep, Provinsi Sulawesi Selatan pada koordinat 119°35'53" BT sampai pada 119°38'00" BT dan 04°46'43" LS sampai 04°48'32" LS,etanol 96%, H₃PO₄ 85%, NH₄OH 1 M, akuabides, *aluminium foil*, kertas saring *whatman* 42, padatan KBr, plat aluminium, *tissue*, dan akuades.

3.2 Alat Penelitian

Alat yang digunakan pada penelitian ini yaitu alat-alat gelas yang biasa digunakan di laboratorium, neraca analitik Ohaus, buret 50 mL, corong saring, cawan krush 30 mL, cawan petri, erlenmeyer 250 mL, klem dan statif, *hotplate* Idealife, *magnetic stirrer*, indikator universal, corong Buchner Staatlich Berlin, desikator, termometer, oven Spnisosfd, *Furnace* Barnstead Thermolyne-1400, *stopwatch*, Difrakrometer sinar-X Shimadzu model 6000, FTIR (*Fourier Transform Infra Red*) Prestige-21 Shimadzu, SEM (*Scanning Electron Microscope*) Philips 515.

3.3 Waktu dan Tempat Penelitian

Penelitian ini dilaksanakan pada bulan Oktober 2016 hingga Maret 2017 di Laboratorium Kimia Anorganik, Laboratorium Kimia Analitik, Laboratorium Kimia Terpadu Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin, Labaratorium Mikrostruktur Jurusan TeknikKimia
Politeknik Ujung Pandang, dan Laboratorium Mikrostruktur Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Makassar.

3.4 Prosedur Kerja

3.4.1 Analisis XRF dari Batu Kapur

Batu kapur dibersihkan dari kotoran dengan akuades lalu dikeringkan di udara terbuka. Kemudian dianalisis besar kandungan kalsium dan elemen-elemen lainnya dengan XRF (*X-Ray Fluorescence*).

3.4.2 Kalsinasi Batu Kapur

Batu kapuryang telah dianalisis, kemudian dihaluskan untuk persiapan kalsinasi. Kalsinasi batu kapur dilakukan pada suhu 1000 °C selama 12, 16, dan 20 jam. Hasil kalsinasi kemudian dianalisis dengan menggunakan XRD (*X-Ray Difraction*). Selanjutnya, dihitung persentase kristalinitasnya.

3.4.3Sintesis Hidroksiapatit dengan Menggunakan Metode Sol-Gel (Padmanabhan, dkk., 2009)

Serbuk CaO hasil kalsinasi dan H₃PO₄ 85% dilarutkan dalam etanol 96% masing-masing sebanyak 50 mL. Pencampuran dilakukan dengan meneteskan H₃PO₄85% ke dalam suspensi pada suhu 40°C dengan pengadukan 300 rpm dan laju alir 1,0 mL/menit selama 1, 2, dan 3 jam (kondisi pHtetap dijaga pada pH 9 dengan meneteskan NH₄OH 1 M). Suspensi yang dihasilkan kemudian diendapkan selama 2 hari. Setelah itu, disaring dengan menggunakan corong Buchner. Selanjutnya, endapan (krim gel putih) dilakukan pencucian dengan akuabides sedangkan fitratnya disisihkan. Kemudian, endapan dikeringkan di dalam oven pada suhu 60°C selama 1 hari hingga membentuk serbuk berwarna

putih.Serbuk yang diperoleh dipanaskan pada suhu 800 dan 900°C selama 3 jam. Hasil sinter kemudian dikarakterisasi dengan XRD, FTIR, dan SEM.

3.4.4Karakterisasi dengan XRD

Difraktometer yang digunakan adalah XRD Shimadzu 6000, dengan sumber target Cu yang memiliki panjang gelombang 1.5406 Å. Sampel disiapkan sebanyak 2 g, kemudian dimasukkan ke dalam *holder* yang berukuran (2×2) cm² pada difraktometer. Sudut awal diambil pada 10° dan sudut akhir pada 70° dengan kecepatan pembacaan 2° per menit.

3.4.5Karakterisasi dengan FTIR

Sampel disiapkan sebanyak 2 mg, dicampur dengan 100 mg KBr dan dibuat pelet. Analisis spektrum FTIR dilakukan pada kisaran bilangan gelombang dari 4.000-300 cm⁻¹.

3.4.6 Karakterisasi dengan SEM

Sampel diletakkan pada pelat aluminium dan diamati dengan menggunakan SEM dengan tegangan 10 kV, perbesaran 500 dan 5000 kali.

BAB IV

HASIL DAN PEMBAHASAN

Hidroksiapatit dengan rumus molekul $Ca_{10}(PO_4)_6(OH)_2$ merupakan senyawa kalsium apatit biokeramik yang dapat ditemukan dalam gigi dan tulang manusia. Senyawa ini sangat stabil sehingga dapat diimplankan sebagai pengganti tulang dan enamel gigi (Mahreni, 2012). Senyawa ini dapat disintesis dan dikarakterisasi dari batu kapur melalui beberapa tahapan yaitu karakterisasi komposisi batu kapur dengan XRF (*X-Ray Flourosence*), kalsinasi batu kapur, sintesis hidroksiapatit dengan prekursor posfat, karakterisasi kandungan hidroksiapatit dengan, XRD (*X-Ray Diffractometer*), FTIR (*Fourier Transform Infra Red*) dan SEM (*Scanning Electron Microscopy*).

4.1 Karakterisasi Komposisi Batu Kapur dengan XRF

Karakterisasi komposisi batu kapur dengan XRF, merupakan tahap awal sebelum melakukan proses sintesis $Ca_{10}(PO_4)_6(OH)_2$. Analisis tersebut bertujuan untuk mengidentifikasi komposisi-komposisi kimia dari batu kapur, baik secara kualitatif maupun kuantitatif (Brouwer, 2010).

Berdasarkan hasil pengukuran XRF dari batu kapur yang berasal dari Kabupaten Pangkep, Provinsi Sulawesi Selatan, menunjukkan bahwa sebagian besar komposisi yang terkandung dalam batu kapur adalah Ca sebesar 99,78%. Hal ini dapat juga ditinjau berdasarkan data laporan dari Saputra dkk., (2014), dimana kandungan utama dari batu kapur yang berasal dari PT. Semen Tonasa adalah Ca, dan sisanya adalah Mg kurang dari 5%, Al, Si dan Fe. Berdasarkan hasil pengukuran XRF yang diperoleh, menunjukkan bahwa batu kapur memiliki kandungan Ca yang sangat besar serta dapat dijadikan sebagai bahan baku untuk diolah menjadi produk hidroksiapatit.

4.2 Kalsinasi Batu Kapur

Berdasarkan data hasil karakterisasi komposisi batu kapur, maka dilanjutkan dengan melakukan kalsinasi pada batu kapur dengan variasi waktu kalsinasi selama 12, 16, dan 20 jam pada temperatur 1000°C. Proses kalsinasi bertujuan untuk mengeliminasi komponen organik dan mengonversi senyawa CaCO₃(kalsium karbonat) menjadi CaO (kalsium oksida) dan CO₂ (karbon dioksida), serta membandingkan nilai persentase kristalinitas hasil kalsinasi dari masing-masing waktu kalsinasi, untuk dijadikan sebagai bahan yang akan dicampurkan dengan prekursor posfat dalam proses sintesis hidroksiapatit. Keberadaan ion karbonat harus dihilangkan karena sangat berpengaruh dalam hasil sintesis hidroksiapatit (Dahlan dkk., 2009). Adapun hasil reaksinya:

$$CaCO_3 \longrightarrow CaO + CO_2$$
 (8)

CaO yang dihasilkan dari hasil kalsinasi batu kapur, dikarakterisasi dengan menggunakan XRD untuk dapat ditentukan CaO yang akan digunakan dalam sintesis dengan nilai persentase kristalinitas tertinggi. Gambar 6 menujukkan pola difraksi batu kapur hasil kalsinasi selama 12, 16, dan 20 jam pada temperatur 1000°C. Pola difraksi hasil kalsinasi selama 12 jam ditunjukkan pada nilai 2θ : 32,6881°, 37,8443°, 54,2918°, 64,5805°, dan 67,7800°. Sedangkan, pola difraksi hasil kalsinasi selama 16 jam ditunjukkan pada nilai 2θ : 32,4600°, 37,6200°, 54,1193°, 64,3680°, dan 67,5483°, serta pola difraksi hasil kalsinasi selama 20 jam ditunjukkan pada nilai 2θ : 32,5848°, 37,7315°, 54,2246°, 64,4876°, dan 67,7220°.

Gambar 6. Pola difraksi sinar-X dari hasil kalsinasi batu kapur pada temperatur 1000°C selama 12, 16, dan 20 jam.

Berdasarkan pola difraksi yang diperoleh, maka dapat ditentukan persentase kristalinitas dari tiap-tiap variasi waktu kalsinasi pada batu kapur. Persentase kristalinitas menujukkan keteraturan susunan atom dalam bahan. Semakin teratur susunan atom dalam bahan, semakin tinggi tingkat kristalinitasnya. Hal ini ditunjukkan dengan semakin tinggi intensitas dan semakin sempitnya lebar setengah puncak (Prasetyani, 2008). Analisis persentase kristalinitas ini dihitung dengan membandingkan fraksi luas kristalin dengan penjumlahan fraksi luas amorf dan kristal (Lampiran 13, 14, dan 15). Tabel 3 menunjukkan nilai persentase kristalinitas dari hasil kalsinasi selama 12, 16, dan 20 jam selama 1000°C.

Waktu Kalsinasi	Kristalinitas
(Jam)	(%)
12 Jam	71,21
16 Jam	73,12
20 Jam	74,27

Tabel 3. Persentase Kristalinitas Hasil Kalsinasi CaO

Berdasarkan data yang dihasilkan, menunjukkan bahwa kristalinitas CaO hasil kalsinasi yang paling besar adalah pada waktu kalsinasi selama 20 jam sebesar 74,27%. Waktu kalsinasi yang lebih lama akan menyebabkan semakin banyak terbentuknya kristal, karena susunan atom dalam bahan semakin teratur (Purnama, 2006). Hasil kristalinitas yang diperoleh dari tiap-tiap waktu kalsinasi tidak begitu besar. Hal ini dikarenakan, sebagian besar komponen senyawa karbonat serta sebagian kecil dari elemen-elemen batu kapur yang terdapat dalam bahan tersebut (Qoinah dan Prasetyoko, 2010). Berdasarkan hasil tersebut, maka CaO hasil kalsinasi selama 20 jam digunakan sebagai salah satu bahan awal pembuatan HAp.

4.3 Reaksi Suspensi CaO Dengan Prekursor Posfat

Suspensi CaO hasil kalsinasi yang memiliki nilai persentase kristalinitas terbesar direaksikan dengan prekursor posfat H₃PO₄. Proses reaksi ini diperlukan dalam kondisi basa, sehingga adanya penambahan larutan NH₄OH 1 M. Penambahan ini bertujuan untuk mengatur pH agar berada dalam kondisi basa dan menjaga nilai rasio Ca/P yang telah ditetapkan dalam penentuan stoikiometri (Lampiran 7). Parameter yang digunakan dalam proses reaksi HAp adalah waktu pengadukan dan suhu sinter. Proses pengadukan ini dilakukan selama 1, 2, dan 3 jam, agar dapat ditentukan waktu pengadukan optimum dari setiap variasi waktu pengadukan terhadap probabilitas kemurnian fase HAp. Setelah proses pengadukan, campuran tersebut diendapkan selama 2 hari agar tercampur secara homogen. Campuran yang telah diendapkan, kemudian disaring dan dilakukan pencucian dengan menggunakan akuabides untuk memisahkan komponen pelarut (filtrat) dengan endapan (krim gel berwarna putih) yang dihasilkan dari pencampuran CaO dan H₃PO₄, serta menghilangkan komponen-komponen ammonia yang masih terdapat pada endapan. Kemudian, endapan yang dihasilkan dikeringkan dalam oven pada suhu 60°C selama 1 hari untuk menghasilkan serbuk HAp dalam keadaan kering.

Sampel hasil sintesis selanjutnya disinter pada suhu 800 dan 900 °C untuk menentukan suhu optimum pembentukan HAp. Sama halnya dengan parameter waktu pengadukan, perlakuan panas dilakukan untuk menghilangkan pengotor pada hasil sintesis dan mempelajari efek perubahan temperatur terhadap ukuran partikel, kristalinitas, dan probabilitas kemurnian hidroksiapatit hasil sintesis. Karakterisasi hidroksiapatit hasil sintesis dilakukan dengan menggunakan XRD, FTIR, dan SEM.

4.3.1 Karakterisasi Hasil Sinter Dengan XRD

Hasil analisis dengan difraksi sinar-X digunakan untuk mengidentifikasi fase dan karakterisasi struktur kristal nanopartikel (Shahwan, dkk., 2011). Sinar-X menembus ke dalam nanomaterial dan pola difraksi yang dihasilkan, dibandingkan dengan data standar untuk memperoleh informasi struktur (Mittal, dkk., 2013). Untuk menentukan waktu pengadukan dan suhu optimum dari HAp hasil sintesis, dilakukan perhitungan probabilitas fase sampel hasil XRD melalui pencocokan dengan data standar JCPDS, diantaranya data JCPDS 24-0033 untuk Hidroksiapatit $[Ca_{10}(PO_4)_6(OH)_2]$ (HAp), JCPDS 09-0169 untuk β -Trikalsium Posfat $[\beta$ -Ca₃(PO₄)₂] (β -TCP), JCPDS 35-0180 untuk Karbonat Apatit $[Ca_{10}(PO_4)_6CO_3]$ (AKA) dan data *American Mineralogist* AM 120-133 untuk Magnesium Whitlockite Ca₁₈Mg₂H₂(PO₄)₁₄ (MgW). Difraktogram XRD dari hasil sintesis, ditunjukkan berdasarkan waktu pengadukan dan suhu sinter. Hasil analisis HAp pada waktu pengadukan 1 jam dengan suhu sinter 800 dan 900°C ditunjukkan pada Gambar 7.

Gambar 7. Pola Difraksi Sinar-X untuk Waktu Pengadukan 1 Jam dengan Suhu Sinter 800 dan 900°

Hasil XRD menunjukkan bahwa masing-masing sampel memiliki perbedaan, dalam hal keberadaan fase HAp dengan masing-masing impuritas yaitu ß-TCP, AKA, dan MgW. Untuk waktu pengadukan 1 jam dengan suhu sinter 800°C, menunjukkan terdapat fase lain dengan senyawa yang paling dominan adalah Ca₁₈Mg₂H₂(PO₄)₁₄ sebesar 48,38709% (Lampiran 16), sehingga probabilitas fase HAp yang diperoleh hanya 24,19354%. Hal ini ditunjukkan oleh puncak-puncak spektrum pada sampel HAp hasil sintesis tidak sesuai dengan data JCPDS dari HAp. Selain itu, puncak-puncak tertinggi didominasi oleh fase MgW yaitu pada sudut 31,3338° dan 34,6820°, sedangkan sudut 28,1583° merupakan fase HAp. Pola difraksi XRD untuk waktu pengadukan 1 jam dengan suhu sinter 900°C, menunjukkan bahwa probabilitas kemurnian tertinggi berada pada fase HAp sebesar 40% (Lampiran 17). Dengan demikian, fase HAp sudah mulai mendominasi setiap puncak-puncak spektrum. Meskipun puncak tertinggi pada sudut 31,6694°, 35,0171°, dan 28,5082° masing-masing merupakan fase AKA, β-TCP, dan HAp (Lampiran 20). Hal ini disebabkan karena banyaknya pergeseran spektrum pada fase HAp sintesis dengan data standar. Penambahan suhu sinter menunjukkan adanya pengaruh yang signifikan terhadap probabilitas fase HAp. Selain itu, hasil analisis XRD untuk sampel HAp pada waktu pengadukan selama 2 jam dengan suhu sinter 800 dan 900°C ditunjukkan pada Gambar 8.

Gambar 8. Pola Difraksi Sinar-X untuk Waktu Pengadukan 2 Jam dengan Suhu Sinter 800 dan 900°C.

Difraktogram sinar-X pada sampel HAp untuk waktu pengadukan 2 jam dengan suhu sinter 800°C, menunjukkan bahwa puncak tertinggi pada sudut 32,0000° dan 32,9600° adalah fase HAp serta pada sudut 31,2600° adalah fase MgW. Sedangkan, untuk suhu sinter 900°C menunjukkan bahwa puncak tertinggi pada sudut 31,6068°, 32,7137°, dan 30,8758° masing-masing adalah fase AKA, HAp, dan β -TCP. Akan tetapi, secara keseluruhan puncak difraktogram sinar-X untuk kedua sampel dengan waktu pengadukan 2 jam telah didominasi oleh HAp dibandingkan untuk waktu pengadukan 1 jam dengan suhu sinter 900°C. Hal ini dapat dilihat pada Gambar 8, dimana kesesuaian puncak-puncak spektrum dengan

data standar HAp sangat mendominasi. Selain itu, keberadaan fase-fase lainnya seperti β-TCP dan MgW tidak begitu banyak pada sampel. Sehingga diperoleh probabilitas fase HA untuk waktu pengadukan 2 jam dengan suhu sinter 800°C sebesar 72,09302% (Lampiran 18) dan pada suhu sinter 900°C sebesar 73,68421% (Lampiran 19). Sedangkan hasil analisis XRD pada waktu pengadukan 3 jam dengan suhu sinter 800 dan 900°C, ditunjukkan pada Gambar 9.

Gambar 9. Pola Difraksi Sinar-X untuk Waktu Pengadukan 3 Jam dengan Suhu Sinter 800 dan 900 °C.

Difraktogram sinar-X sampel untuk waktu pengadukan 3 jam dengan suhu sinter 800 dan 900°C, menunjukkan bahwa probabilitas fase HAp sangat menurun dan sebagian besar didominasi oleh probabilitas fase MgW sebesar 59,64912% untuk suhu sinter 800°C dan 72,60273% untuk 900°C. Hal ini juga ditunjukkan bahwa, untuk waktu pengadukan 3 jam dengan suhu sinter 800°C, puncak tertinggi pada sudut 31,0472°, 34,3900°, dan 27,8735° adalah fase MgWsedangkan untuk suhu sinter 900°C, puncak tertinggi pada sudut 31,2204° dan 34,5753°adalah fase MgW dan pada sudut 28,0383° adalah fase HAp. Oleh karena probabalitas fase MgWsangat mendominasi pada kondisi ini, sehingga hanya diperoleh probabilitas fase HAp sebesar 24,56140% untuk suhu sinter 800°C (Lampiran 20) serta 15,06849% untuk suhu sinter 900°C (Lampiran 21).

Gambar 10. Persentase Probabilitas Fase Sampel dari Setiap waktu Pengadukan Untuk Suhu Sinter 800°C (a) dan 900°C (b).

Sebagian besar sampel tersebut ditunjukan oleh keberadaan fase MgW (Magnesium Whitlockite) untuk setiap sampel. Suhu sinter dan waktu pengadukan yang berlebih akan menyebabkan terjadinya pergantian gugus fungsi dimana posisi Ca tersubsitusi oleh Mg yang berasal dari komponen batu kapur. Keberadaan komponen logam-logam ini diperkuat oleh data SEM, sehingga untuk waktu pengadukan 3 jam dengan suhu sinter 900°C probabilitas fase MgW sangat meningkat. Yuliati (2008) juga melaporkan bahwa sampel telur yang digunakan untuk mensintesis HAp pada suhu 1000°C, terjadi penggantian gugus fungsi dimana tempat Ca digantikan oleh Mg sehingga pada temperatur ini jumlah whitlockite lebih banyak daripada hidroksiapatit yang dapat diketahui dari hasil pola XRD. Keberadaan fase ini tidak membahayakan bagi manusia, karena Mg-whitlockite sering digunakan dalam dunia patologi khususnya dalam kalkulus gigi. Untuk fase β -Ca₃(PO₄)₂, memiliki persentase probabilitas yang tidak terlalu besar, tetapi keberadaan fase ini menunjukkan bahwa gugus OH mulai lepas (Rosmawati, 2014). Sedangkan fase $Ca_{10}(PO_4)_6CO_3$ memiliki probabilitas yang sangat kecil karena proses sintesis dilakukan dalam keadaan vakum, sehingga tidak terlalu besar pengaruh kontak udara dengan HAp saat proses sintesis.

Kristalinitas sampel hasil sintesis dengan menggunakan XRD diperlukan untuk dapat mengetahui keteraturan susunan atom dalam suatu bahan, sehingga pada penelitian dilakukan penentuan persentase kristalinitas HAp hasil sintesis. Kristalinitas HAp hasil sintesis dihitung denga menggunakan metode Landi (Landi, dkk., 2004):

$$Xc = \left\{ 1 - \frac{V_{112-300}}{I_{300}} \right\} \times 100\% \dots (9)$$

dimana Xc merupakan % kristalinitas, $V_{112-300}$ merupakan puncak terendah antara puncak-puncak hasil difraksi indeks miller (112) dan (300) sebagai indeks miller

dengan tingkat intensitas tertinggi, dan I_{300} merupakan intensitas puncak yang dihasilkan oleh indeks miller 300 (Lampiran 22 - 27). Tabel 4 menunjukkan persentase kristalinitas untuk setiap waktu pengadukan dan suhu sinter.

No.	Waktu Pengadukan	Suhu Sinter	Kristalinitas
	(Jam)	(°C)	(%)
1	1	800	90,281
1	1	900	96,674
2	n	800	89,826
2	2	900	90,867
2	2	800	92,573
3	3	900	93,102

Tabel 4. Hasil Perhitungan Persentase Kristalinitas HAp Sintesis

Persentase kristalinitas yang diperoleh ditinjau berdasarkan kakteristik puncak-puncak yang dimiliki oleh fase HAp. Puncak-puncak pada HAp pada waktu pengadukan 2 jam menunjukkan puncak-puncak yang melebar pada intensitas tertinggi (indeks miller 112 dan 300) sehingga kristalinitas HAp lebih kecil. Berbeda halnya dengan waktu pengadukan 1 dan 3 jam, diperoleh kristalinitas yang cukup tinggi. Suryadi (2011) melaporkan bahwa kristalinitas mulai meningkat seiring dengan peningkatan suhu sinter yang ditandai dengan puncak-puncak yang sempit. Hal ini juga sesuai dengan data pada Tabel 4, bahwa kristalinitas untuk setiap waktu pengadukan pada suhu sinter 900 °C lebih tinggi dibandingkan suhu sinter 800 °C.

Gambar 11. Persentase Kristalinitas Fase Sampel HAp Terhadap Waktu Pengadukan Suhu Sinter

Hasil XRD dari sampel hasil sintesis, dapat menunjukkan ukuran suatu sampel. Oleh karena itu, pada penelitian ini juga dilakukan penentuan ukuran hidroksiapatit hasil sintesis. Ukuran kristal hidroksiapatit dapat dihitung dengan menggunakan persamaan Debyr-Scherrer:

Dimana, D adalah ketebalan kristal, k adalah konstanta (0,98), λ adalah panjang gelombang sinar-X (1,5406 Å) dan ß adalah lebar keseluruhan dari setengah maksimal refleksi pada sudut Bragg 20. Pola XRD Gambar 7, 8, dan 9 menunjukkan puncak yang kuat pada spektrum dengan jarak nilai 20 dari 10° sampai 70°. Diameter rata-rata kisi kristal dari partikel hidroksiapatit ditunjukkan pada Tabel 5 untuk setiap parameter waktu pengadukan dan suhu sinter, dimana ukuran tersebut diperoleh dari puncak FWHM hidroksiapatit yang memiliki intensitas tinggi, dan ukuran ini termasuk dalam ukuran nano. Perhitungan diameter kisi kristal dapat dilihat pada Lampiran 28 – 33.

No	Waktu Pengadukan	Suhu Sinter	20 (°)	d(Å)	FWHM (°)	D (nm)		
			28,1583	3,16654	0,38420	23,40744		
		800°C	48,7000	1,86826	0,34500	27,85572		
			22,1625	4,00779	0,37500	23,55351		
1 1 Iam			24,93889					
1	I I Jain		28,5082	3,12847	0,40580	22,17004		
		900°C	48,6600	1,86970	0,35000	27,25235		
			22,4875	3,95059	0,42500	33,55510		
			Rata	-Rata		27,65916		
			32,0000	2,79461	1,23340	7,31837		
2	2 Jam	800°C	26,0187	3,42188	0,63460	14,03141		
			32,9600	2,71538	0,79260	11,40317		

Tabel 5. Hasil Perhitungan Diameter Kisi Kristal HAp Hasil Sintesis

			Rata	n-Rata		10,91765			
			32,7137	2,73526	0,36500	24,83191			
		900°C	25,6789	3,46639	0,35620	25,20501			
			31,9800	2,79632	0,45000	20,02361			
			23,35351						
2	3 Jam -		25,8367	3,44557	0,40110	22,23535			
		800°C	31,8000	2,81173	0,38280	23,62723			
			32,9600	2,71538	0,40440	22,40030			
			22,75429						
5		900°C	28,0383	3,17982	0,29920	29,89663			
			25,9806	3,42681	0,24400	36,91394			
			31,9876	2,79567	0,26280	34,31318			
			Rata-Rata						

Rata-rata diameter kisi kristal HAp didapatkan dari 3 puncak HAp yang memiliki intensitas paling tinggi pada data hasil XRD dengan ukuran nano yaitu 10 - 33 nm.

Gambar 12. Pengaruh diameter kisi kristal HAp terhadap waktu pengadukan dan suhu sinter

Berdasarkan grafik diameter rata-rata kisi kristal terhadap waktu pengadukan dan suhu sinter menunjukkan bahwa, kenaikan suhu menyebabkan besarnya ukuran kisi kristal suatu sampel. Oleh karena itu, suhu berpengaruh terhadap besar kristalit dari HAp yang dihasilkan.

4.3.2 Karakterisasi Dengan FTIR

Analisis dengan menggunakan FTIR dilakukan untuk mengidentifikasi kemungkinan biomolekul dan gugus fungsi yang bertanggung jawab dalam pembentukan nanopartikel. Spektrum FTIR menunjukkan adanya gugus fungsi OH^{-} , PO_4^{3-} , dan CO_3^{2-} yang merupakan gugus fungsi penyusun HAp.

Gambar 13. Spektrum FTIR Hidroksiapatit untuk Waktu Pengadukan 1 Jam dengan Suhu Sinter 800 dan 900°C.

Gambar 13 menunjukkan bahwa HAp merupakan senyawa yang dominan terbentuk. Untuk HAp pada waktu pengadukan 1 jam dengan suhu sinter 800°C, spektrum yang menunjukkan serapan PO₄³⁻ terletak pada daerah 979,84 cm⁻¹; 374,19 cm⁻¹; 1043,49 cm⁻¹; 605,65 cm⁻¹; 551,64 cm⁻¹. Sedangkan untuk waktu pengadukan 1 jam dengan suhu sinter 900°C, serapan PO₄³⁻ terletak pada daerah 974,05 cm⁻¹; 1041,56 cm⁻¹; 607,58 cm⁻¹; 549,71cm⁻¹. Untuk HAp pada waktu pengadukan 1 jam dengan suhu sinter 800°C, keberadaan gugus OH⁻¹ terdapat pada daerah 3423,65 cm⁻¹ dan menunjukkan serapan yang tajam pada daerah 3566,38 cm⁻¹. Sedangkan untuk waktu pengadukan 1 jam dengan suhu sinter 900°C, keberadaan suhu

sinter 900°C, gugus OH⁻ terletak pada daerah 3441,01 cm⁻¹ dan serapan tajam terletak pada daerah 3568,31 cm⁻¹. Selain itu, HAp pada waktu pengadukan 1 jam selama suhu sinter 800°C, serapan di daerah 1456,26 cm⁻¹ menunjukkan keberadaan gugus karbonat (CO_3^{2-}). Sedangkan untuk suhu sinter 900°C tidak menunjukkan keberadaan gugus (CO_3^{2-}).

Gambar 14. Spektrum FTIR Hidroksiapatit untuk Waktu Pengadukan 2 Jam dengan Suhu Sinter 800 dan 900°C.

Gambar 14 menunjukkan bahwa HAp merupakan senyawa yang dominan terbentuk. Untuk HAp pada waktu pengadukan 2 jam dengan suhu sinter 800°C, spektrum yang menunjukkan serapan PO₄³⁻ terletak pada daerah 374,19 cm⁻¹; 1091,71 cm⁻¹; 1043,49 cm⁻¹; 603,72 cm⁻¹; 570,93 cm⁻¹. Sedangkan untuk waktu pengadukan 2 jam dengan suhu sinter 900°C, serapan PO₄³⁻ terletak pada daerah 1093.64 cm⁻¹; 1039,63 cm⁻¹; 601,79 cm⁻¹; 569,00cm⁻¹. Untuk HAp pada waktu pengadukan 2 jam dengan suhu sinter 800°C, keberadaan gugus OH⁻ terdapat pada daerah 3421,72 cm⁻¹ dan menunjukkan serapan yang tajam pada daerah 3566,38 cm⁻¹. Sedangkan untuk waktu pengadukan 2 jam dengan suhu sinter 800°C, keberadaan suhu

sinter 900°C, gugus OH⁻ terletak pada daerah 3437,15 cm⁻¹ dan serapan tajam terletak pada daerah 3570,24 cm⁻¹. Selain itu, HAp pada waktu pengadukan 2 jam selama suhu sinter 800°C, serapan di daerah 1456,26 cm⁻¹ menunjukkan keberadaan gugus karbonat (CO_3^{2-}). Sedangkan untuk suhu sinter 900°C, keberadaan gugus (CO_3^{2-}) ditunjukkan pada daerah 1454,33 cm⁻¹.

Gambar 15. Spektrum FTIR Hidroksiapatit untuk Waktu Pengadukan 3 Jam dengan Suhu Sinter 800 dan 900°C.

Gambar 15 menunjukkan bahwa HAp merupakan senyawa yang dominan terbentuk. Untuk HAp pada waktu pengadukan 3 jam dengan suhu sinter 800°C, spektrum yang menunjukkan serapan PO₄³⁻ terletak pada daerah 947,05 cm⁻¹; 1091,71 cm⁻¹; 1041,56 cm⁻¹; 605,65 cm⁻¹; 551,64 cm⁻¹. Sedangkan untuk waktu pengadukan 3 jam dengan suhu sinter 900°C, serapan PO₄³⁻ terletak pada daerah 945,12 cm⁻¹; 372,26 cm⁻¹; 1093.64 cm⁻¹; 1043,49 cm⁻¹; 605,65 cm⁻¹; 569,00cm⁻¹. Untuk HAp pada waktu pengadukan 3 jam dengan suhu sinter 800°C, keberadaan gugus OH⁻ terdapat pada daerah 3446,79 cm⁻¹ dan menunjukkan serapan yang tajam pada daerah 3568,31 cm⁻¹. Sedangkan untuk

waktu pengadukan 3 jam dengan suhu sinter 900°C, gugus OH⁻ terletak pada daerah 3421,72 cm⁻¹ dan serapan tajam terletak pada daerah 3568,31 cm⁻¹. Sedangkan, HAp untuk waktu pengadukan 3 jam dengan suhu sinter 800 dan 900°C tidak menunjukkan adanya gugus karbonat.

Hasil FTIR untuk setiap parameter waktu pengadukan dan suhu sinter memperkuat dugaan bahwa secara keseluruhan senyawa yang dominan terbentuk adalah hidroksiapatit. Menurut Vandiver dkk., (2004), ion posfat dapat ditemukan pada hidroksiapatit dalam 4 mode vibrasi, yaitu vibrasi *stretching* (v_1) dengan bilangan gelombang sekitar 956 cm⁻¹, vibrasi *bending* (v_2) dengan bilangan gelombang sekitar 363 cm⁻¹, vibrasi asimetri *stretching* (v_3) dengan bilangan gelombang 1030 sampai 1090 cm⁻¹, dan vibrasi antisimetri *bending* (v_4), dengan bilangan gelombang sekitar 562 sampai 603 cm⁻¹ dalam bentuk pita belah dan merupakan pita terkuat.

Gugus OH⁻ yang terbentuk, berada pada bilangan gelombang 3600 sampai 3200 cm⁻¹ dan merupakan gugus penyusun $Ca_{10}(PO_4)_6(OH)_2$. Selain itu, keberadaan gugus karbonat (CO_3^{2-}) mengidentifikasikan bahwa terdapatnya $Ca_{10}(PO_4)_6CO_3$ yang belum mengalami transformasi menjadi $Ca_{10}(PO_4)_6(OH)_2$ selama proses sinter (Harlim, 1986).

4.3.3 Karakterisasi Dengan SEM

Karakterisasi *Scanning Electron Microscopy* (SEM) terhadap sampel hasil sintesis dilakukan untuk mengamati morfologi permukaan nanopartikel HAp. Instrumen SEM dapat mengidentifikasi karakteristik fisik dari HAp diantaranya, ukuran, bentuk, struktur, dan morfologi dari nano kristal HAp yang terbentuk. Hasil analisis SEM dilakukan pada sampel HAp yang memiliki probabilitas yang tinggi yaitu HAp pada waktu pengadukan 2 jam dengan suhu sinter 900 °C. Hasil SEM dapat dilihat pada Gambar 16.

Gambar 16. Morfologi HAp Hasil Sintesis Dengan Perbesaran 500x dan Perbesaran 5000x

Gambar 16 menunjukkan bahwa sampel HAp pada perbesaran 500x (a), memperlihatkan adanya aglomerasi dari partikel-partikel tersebut. Selain itu, terdapat beberapa sampel HAp yang berbentuk *spherical* (bulat) yang tidak sama besar dan cenderung membentuk granular. Pada perbesaran 5000x (b), morfologi sampel hidroksiapatit menunjukkan gumpalan yang cukup besar tetapi memiliki pori pada permukaan morfologi sampel. Hal ini juga dilaporkan oleh Muhara dkk., (2015) bahwa morfologi yang cukup besar, menggumpal, dan tidak memiliki pori pada permukaannya, menunjukkan adanya kalsium oksida pada sampel. Apabila gumpalan masih besar tetapi mulai memiliki pori pada permukaan morfologi sampel, menunjukkan masih adanya senyawa posfat lain yaitu trikalsium posfat. Berdasarkan morfologi yang diperoleh menunjukkan adanya kecocokan pada standar HAp murni, dimana Castro (1992) melaporkan bahwa HAp murni memiliki bentuk bulat dengan dominasi partikel-partikel yang mengalami aglomerasi. Instrumen *Energy Dispersive Spectroscopy* (EDS) merupakan salah satu instrument yang dirangkai pada alat SEM. Analisis EDS dapat memberikan informasi secara kualitatif dan kuantitatif tentang komposisi suatu sampel (Muhara, dkk., 2015).

Gambar 17. Hasil EDS Hidroksiapatit Hasil Sintesis

Hasil analisis EDS komposisi atom dan senyawa hidroksiapatit hasil sintesis dapat dilihat pada Tabel 6.

Atom	Komposisi (%)	Senyawa	Komposisi Senyawa %
Na	0,35	Na ₂ O	0,54
Mg	0,30	MgO	0,57
Al	0,07	Al_2O_3	0,15
Р	15,83	P_2O_5	41,38
Ca	35,94	CaO	57,36
0	35,18		00,00

Tabel 6. Komposisi Atom dan Senyawa Hidroksiapatit Hasil Sintesis

Tabel 6 menunjukkan komposisi hasil sintesis yang didominasi oleh oksigen (O) sebesar 35,18%, kalsium sebesar 35,94%, dan posfor (P) sebesar 15,83%. Selain itu, unsur-unsur pengotor lainnya terbentuk dari senyawa kalsium yang masih belum murni ditambah pula unsur-unsur tersebut belum tereliminasi

secara sempurna pada saat proses sintering (Cahyati, 2014). Hal ini menunjukkan bahwa dengan adanya unsur-unsur tersebut mempengaruhi banyaknya unsur Ca dan P yang terbentuk dalam sampel.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil penelitian ini, diperoleh kesimpulan:

- Bahan alam batu kapur sangat berpotensi untu dijadikan sebagai bahan baku dalam sintesis Ca₁₀(PO₄)₆(OH)₂ karena kadar kalsiumnya yang tinggi, yakni sebesar 99,78%.
- 2. Waktu pengadukan optimum pembentukan $Ca_{10}(PO_4)_6(OH)_2$ adalah 2 jam.
- 3. Suhu sinter optimum pembentukan $Ca_{10}(PO_4)_6(OH)_2$ adalah 900°C.
- 4. Probabilitas kemurnian HAp tertinggi adalah 73,68421%.

5.2 Saran

Penelitian ini diharapkan dapat dikembangkan dengan parameter lainnya seperti, kecepatan pengadukan dan pH optimum untuk menyempurnakan sintesis senyawa $Ca_{10}(PO_4)_6(OH)_2$ dengan menggunakan metode ini, agar diperoleh kemurnian $Ca_{10}(PO_4)_6(OH)_2$ yang lebih baik. Selain itu, dapat pula dilakukan penelitian sintesis $Ca_{10}(PO_4)_6(OH)_2$ dengan menggunakan metode-metode lain, seperti hidrotermal dan sebagainya, sehingga dapat dibandingkan tingkat kemurnian yang lebih baik untuk setiap metode dari senyawa yang dihasilkan.

DAFTAR PUSTAKA

- Arrafiqie, M. F., Azis, Y., Zultiniar, 2016, Sintesis Hidroksiapatit dari Limbah Kulit Kerang Lokan (*Geloina expansa*) Dengan Metode Hidrothermal, *Journal FTEKNIK*, 3(1): 1-8.
- Atia, N. Sidiqia, Nina, D., Bambang, S., Renny, F., 2012, Surface Modification of Multilaver Coatings Ti-Al-Cr and Hydroxyapatite on Calcium Phosphate Cement with Sol-Gel Method, *Journal of Dentistry Indonesia*, **19**(2): 43-46.
- Balamurugan, A. M. J., Faure, J., Benhayoune, H., Wortham, L., Sockalingum, G., Banchet, V., Bouthors, S., Laurent-Maquin, D., Balossier, G., 2006, Synthesis and Structural Analysis of Sol-Gel Derived Stoichiometric Monophasic Hydroxyapatite. *CERAMICS SILIKATY*, **50**(1): 27-31.
- Cahyati, C., 2014, Observasi Morfologi dan Komposisi Hidroksiapatit yang Terbuat dari Cangkang Telur Ayam Kampung dan Ayam Ras, Skripsi, Institut Pertanian Bogor, Bogor.
- Corno, M., Busco, C., Civalleri, B., Ugliengo, P., 2006, Periodic ab Initio Study of Structural and Vibrational Features of Hexagonal Hydroxyapatite Ca₁₀(PO₄)₆(OH)₂, *Physical Chemistry Chemical Physics*, **8**(21): 2464, 2472.
- Cullity, B. D., dan Stock, S. R., 2001, *Elements of X-Ray Diffraction*, Prentice Hall, New Jersey (US).
- Dahlan, K., Prasetyanti, F., dan Sari, Y. W., 2009, Sintesis Hidroksiapatit dari Kulit Telur Menggunakan Dry Metode, *Jurnal Biofisika*,**5**(2): 71-78.
- Deptupla, A., Chwastowska, J., Łada, W., Olczak, T., Wawszczak, D., Sterlińska, E., Sartowska, B., Brykała, M., Goretta, K. C., 2006, Sol-Gel Derived Hydroxyapatite and Its Application to Sorption of Heavy metal, *Science* and Technology, 45: 2198 – 2203.
- Dorozhkin, S. V., 2010, Calcium Orthophosphates as Bioceramics: State of the Art. *Journal of Functional Biomaterials*, **1**(1): 22-27.
- Farzadi, A., dan Soliati, H. M., 2011, Synthesis and Characterization of Hydroxyapatite/ β-Ricalcium Phosphate Nanocomposites Using Microwave Irradiation, Jurnal Science Direct, 37: 65-71.

- Fifia, Z., 2008, Spektroskopi Inframerah, Serapan Atomik, dan Ultraviolet-Visible Hidroksiapatit Dari Cangkang Telur, Skripsi,Institut Pertanian Bogor, Bogor.
- Gomes, J. F. G., Christina, C., Silva, M. A., Hoyos, M., Silva, R., Vieira, T., 2008, An Investigation of the Synthesis Parameters of the Reactions of Hydroxyapatite Precipitation in Aqueous Media, *International Journal of Chemical Reactor Engineering*, 6: 103.
- Hamimu, L., Hasriani, Jahidin, 2012, Karakterisasi Sifat Fisika Batu Kapur Di Desa Labaha Kecamatan Watopute Kabupaten Muna, *Jurnal Aplikasi Fisika*, 8(2): 70 76.
- Hidayat, T., 2013, *Sintesis dan Pencirian Hidroksiapatit dari Cangkang Kerang Hijau dengan Metode Sol-Gel*, Skripsi, Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor, Bogor.
- Jillavenkatesa, A., dan Condrate Sr, R. A., 1998, Sol–gel Processing of Hydroxyapatite, *Journal of Materials Science*, **33**(16): 4111-4119.
- Kehoe, S., 2008, Optimisation of Hydroxyapatite (HAp) for Orthopaedic Application via the Chemical Precipitation Technique, Thesis, School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland.
- Landi, E., Tampieri, A., Celotti, G., dan Spriro, S., 2004, Densification Behaviour and Mechanisms of Synthetic Hydroxyapatite, *Journal of European Ceramics Society*, **3**(1): 45-53.
- Li, P., dan Groot, K., 1994, Better Bioactive Ceramics Through Sol-Gel Process. *Journal of Sol-Gel Science and Technology*, **2**(1): 797-801.
- Lukman, M., Yudyanto., Hartatiek, 2012, Sintesis Biomaterial Komposit CaO.SiO₂ Berbasis Material Alam (Batuan Kapur Dan Pasir Kuarsa) Dengan Variasi Suhu Pemanasan Dan Pengaruhnya Terhadap Porositas, Kekerasan Dan Mikrostruktur, *Journal Sains*, **2**(1): 1-7.
- Mahreni dan Endang, S., 2012, *Pembuatan Hidroksi Apatit Dari Kulit Telur*, Tesis, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Yogyakarta.
- Maming, Taba, P., Basir, D. N., 2014, Pemanfaatan Limbah Cangkang Telur Untuk Produksi Kalsium Hidroksiapatit Dan Pemanfaatannya Sebagai Bahan Aditif Pasta Gigi, Universitas Hasanuddin, Makassar.
- Manafi, A. M., dan Joughehdoust. S., 2009, Synthesis of Hydroxyapatite Nanostructure by Hydrothermal Condition for Biomedical Application. *Iran. J. Pharma. Since.*,**5**(2): 89 – 94.

- Mittal, A. K., Chisti, Y., dan Banerjee, U. C., 2013, Synthesis of Metallic Nanoparticles Using Plant Extract, *Biotechnol. Adv.*, **31**: 346-356.
- Muhara, I., Fadli, A., Akbar, F., 2015, Sintesis Hidroksiapatit Dari Kulit Kerang Darah Dengan Metode Hidrotermal Suhu Rendah, *Journal FTEKNIK*, **2**(1): 1-4.
- Mulyaningsih, N. N., 2007, Karakterisasi Hidroksiapatit Sintetik dan Alami pada Suhu 1400 °C, Skripsi, Institut Pertanian Bogor, Bogor.
- Muntamah, 2011, Sintesis dan Karakterisasi Hidroksiapatit dari Limbah Cangkang Kerang Darah (Anadara Granosa, Sp), Tesis, Institut Pertanian Bogor, Bogor.
- Narasaraju, T. S. B., dan Phebe, D. E., 1996, Some Physico-Chemical Aspects of Hydroxylapatite, *Journal of Material Science*, **31**(1): 1-21.
- Negara, I. N. W., dan Putra, T. G. S., 2010, Potensi Batu Kapur Nusa Penida Sebagai Agregat Pengerasan Jalan, *Jurnal Ilmiah Teknik Sipil*, **14**(1): 69 – 73.
- Ningsih, R. P., Wahyuni, N., dan Destiarti, L., 2014, Sintesis Hidroksiapatit Dari Cangkang Kerang Kepah (*Polymesode erosa*) Dengan Variasi Waktu Pengadukan, *JKK*, **3**(1): 1-5.
- Nukman, A., 2005, Analisis Manajemen dan Komunikasi Risiko Kesehatan Pertambangan Kapur. Departemen Kesehatan Republik Indonesia, Jakarta.
- Nurlaela, A., 2009, Penumbuhan Kristal apatit dari Cangkang Telur Ayam dan Bebek pada Kitosan dengan Metode Presipitasi, Tesis, Institut Pertanian Bogor, Bogor.
- Oates, J.A. H., 1998, *Lime and Limestone, Chemistry and Technology, Production and Uses*, Wiley-Vch, New Jersey.
- Padmanabhan, S. K., Balakrishnan, A., Chu, M. C., Lee, Y. J., Kim, T. N., Cho, S. J., 2009, Sol-Gel Synthesis and Characterization of Hydroxyapatite Nanorods, Journal Particuology, 7: 466-470
- Pal, S., Roy, S., Bag, S., 2005, Hydroxyapatite Coating Over Alumina-Ultra High Molecular Weight Polyethylene Composite Biomaterials, *Trends Biomater Artif Organs*, 18(2): 106-109.
- Petit, R., 1999, The Use of Hydroxyapatite in Orthopaedic Surgery: A Ten-Year Review, European Journal of Orthopaedic Surgery and Amp; Traumatology, 9(2): 71-74.

- Prasetyanti, F., 2008, Pemanfaatan Cangkang Telur Ayam Untuk Sintesis Hidroksiapatit Dengan Reaksi Kering, Skripsi, Institut Pertanian Bogor, Bogor.
- Purnama, E. F., 2006, Pengaruh Suhu Reaksi Terhadap Derajat Kristalinitas dan Komposisi Dibuat dengan Media Air dan Cairan Tubuh Buatan (Synthetic Body Fluid), Skripsi, Institut Teknologi Sepuluh November, Jakarta.
- Pusat Penelitian dan Pengembangan Teknologi Mineral, 2009, Bahan Galian Industri, Industrial Minerals Inc., Jakarta.
- Qoina, I., dan Prasetyoko, D., 2010, Penggunaan Cangkang Bekicot Sebagai Katalis Untuk Reaksi Transesterifikasi Refined Palm Oil, Skripsi, Institut Teknologi Sepuluh November, Jakarta.
- Raya, I., Mayasari, E., Yahya, A., Syahrul, M., Latunra, A. I., 2015, Shynthesis and Characterizations of Calcium Hydroxyapatite Derived from Crabs Shells (*Portunus pelagicus*) and Its Potency in Safeguard Against to Dental Demineralizations, *International Journal of Biomaterials*, 2015(2015): 1-8.
- Riyani, E., 2005 Karakterisasi Senyawa Kalsium Fosfat Karbonat Hasil Presipitasi Menggunakan XRD, SEM, dan EDXA Pengaruh Perubahan Ion F dan Mg, Skripsi, Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor, Bogor.
- Rocha, J. H. G., Lemos, A. F., Kannan, S., Agathopoulos, S., Ferreira, J. M. F., Valerio, P., Oktar, F. N., 2005, Scaffolds for Bone Restoration from Cuttlefish Bone, 37: 850 – 857.
- Rosmawati, E., 2014, Sintesis Ca₁₀(PO₄)₆(OH)₂ dari Limbah Cangkang Telur Ayam dan Potensinya pada Upaya Perlindungan Terhadap Demineralisasi Gigi, Skripsi, Universitas Hasanuddin, Makassar.
- Sasikumar, S., Vijayaraghavan, R., 2006, Low Temperature Synthesis of Nanocrystaline Hydroxyapatite From Egg Shells by Combustion Method, *Trens Biomater Artif Organs*, 19(2): 70 – 73.
- Shahwan, T., Sirriah, S. A., Nairat, M., Boyaci, E., Eroglu, A. E., Scott, T. B., dan Haliam, K. R., 2011, Green Synthesis of Iron Nanoparticles and Their Application as a Fenton-like Catalyst for The Degradation of Aqueous Cationic and Anionic Dyes, *Chem. Eng. J.*, **172**: 258-266.
- Shubri, E., dan Armin, I., 2014, Penentuan Kualitas Batu Kapur dari Desa Halaban Kabupaten Lima Puluh Kota di Laboratorium Dinas Energi dan Sumber Daya Mineral Provinsi Sumatera Barat, Universitas Bung Hatta, Padang.

- Song, C., Weng, W., Cheng, K., Qu, H., Du, P., Shen, G., Han, G., 2003, Sol-Gel Preparation and Preliminary In Vitro Evaluation of Fluorapatite/Hydroxyapatite Sol id Solution Films, J Mater Sci Technol19(5): 495-498.
- Suryadi, 2011, Sintesis dan Karakterisasi Biomaterial Hidroksiapatit dengan Proses Pengendapan Kimia Basah, Program Studi Teknik Metalurgi dan Material Fakultas Teknik Universitas Indonesia, Depok.
- Tazaki, J., Murata, M., Akazawa, T., Yamamoto, M., Ito, K., Arisue, M., Shibata, T., Tabata, Y., 2009, BMP-2 Release And Dose-Response Studies In Hydroxyapatite And β-Tricalcium Phosphate, *Bio-Med Mat & Eng*, 19:141-146.
- Trianita, V. N., 2012, Sintesis Hidroksiapatit Berpori Dengan Porogen Polivinil Alkohol Dan Pati, Skripsi, Institut Pertanian Bogor, Bogor.
- Vazquez, G. C., Barba, C., Pi'na, Mungu'ia, N., 2005, Stoichiometric Hydroxyapatite Obtained by Precipitation and Sol-Gel Processes, *Investigaci'on Revista Mexiana De F'isica*, **51**(3): 234 239.
- Veorhoef, 1995, Geologi Untuk Teknik Sipil, Erlangga, Jakarta.
- Vijayalakshmi, U., dan Rajeswari, S., 2006, Preparation and Characterization of Microcrystalline Hydroxyapatite Using Sol Gel Method, *Journal of Biomedical Materials Research*, **9**(2): 739-749.
- Yessy, W., dan Basril, A.,2011, Sintesis Dan Karakterisasi Pasta Injectable Bone Substitute Iradiasi Bebasis Hidroksiapatit, *Jurnal Ilmiah Aplikasi Isotop Dan Radiasi*, **39**: 30-35.
- Yuliati, D., 2008, Sintesis dan Karakterisasi Serbuk Hidroksiapatit dari Kulit Telur dengan Metode Solution Combustion, Skripsi, Institut Teknik Bandung, Bandung.
- Zuraidah, S., 2006, Penggunaan PecahanuBatu Kapur Puger Sebagai Alternatif Agregat Kasar Ditinjau Terhadap Kuat Tekan Beton, *Jurnal Rekayasa Perencanaan*, **3**(1): 1-4.

Lampiran 1. Bagan Kerja Analisis XRF dari Batu Kapur

Lampiran 2. Bagan Kerja Kalsinasi Batu Kapur

Lampiran 3. Bagan Kerja Sintesis Hidroksiapatit dengan Menggunakan Metode Sol-Gel

Lampiran 4. Karakterisasi HAp Hasil Sintesis Dengan XRD

Lampiran 5. Karakterisasi HAp Hasil Sintesis Dengan FTIR

Lampiran 6.Karakterisasi HAp Hasil Sintesis Dengan SEM

Lampiran 7. Perhitungan Penentuan Massa CaO dan Volume Prekursor Posfat untuk Sintesis HAp

Ca/P = 1,67

Misalkan: $Ca = 1 \mod dan P = 0,6 \liminf dan P = 0$

Massa kalsium (Ca) dalam Kalsium Oksida (CaO).

$$m_{Ca} = n xMr$$

$$= 1 mol x 40 g/mol$$

$$= 40 gram$$

$$m_{CaO} = \frac{MrCaO}{Ar Ca} xm_{ca}$$

$$= \frac{56 g/mol}{40 g/mol} x 40 gram$$

$$= 56 gram$$

Massa posfor (P) dalam Asam Posfat (H₃PO₄)

$$m_{p} = n \times Mr$$

= 0,6 mol x 31 ^g/_{mol}
= 18,6 gram
H₃PO₄ 85% ; ρ =1,71 ^g/_{mL}
1 Liter H₃PO₄85%

- $m = \rho \ x \ V$
- $m ~=~ 1000 \ mL \ x ~ 1,71 \ {}^{g}\!/_{mL}$
- m = 1710 gram

$$mH_3PO_4 = \frac{85}{100}x \ 170 \ gram$$

$$= 1453,5 \text{ gram}$$

Sehingga:

$$m_p = \frac{31 \text{ g/mol}}{98 \text{ g/mol}} x \quad 1453 \text{ gram}$$

 $m_p = 459,78 \text{ gram}$

maka, diperoleh :

$$V = \frac{18.6 \text{ g/mol}}{459,78 \text{ g/mol}} \text{x} \ 1000 \text{ mL}$$
$$= 40,45 \text{ mL}$$

Oleh karena itu, diperoleh:

 $m_{CaO} = 56 \text{ gram} : 10 = 5,6 \text{ gram}$

 $V_{H_3PO_4} = 40,45 \text{ mL} : 10 = 4,045 \text{ mL}$

Jadi, digunakan massa CaO sebesar 5,6 gram dan volume H₃PO₄ 85% sebesar

4,045 mL

PDF # 371497, Wavelen 37-1497 Quality: * CAS Number: 1305-78-8 Molecular Weight: 56.08 Volume[CD]: 111.33	gth = 1.5 Ca O Calcium Ref: Mc	40598 (Oxide Murdie,	A) Het	al.	Po	wder Diffra	action, 1	, 266	(1986)				-	<u> </u>
Dx: 3.346 Dm: S.G.: Fm3m (225) Cell Parameters: a 4.810 b c a 4.810 b c SS/FOM: F13=146(.0069, 13) I/Icor: Bart CuKa1	Fixed Slit Sqrt Intensity		25		5		75	100		125	28°				
Lambda: 1.5405981 Filter: Graph	20	int-f	h	k	1	28	int-f	h	кI	20	int-f	h	k	T	
<u>d-sp:</u> diffractometer Mineral Name: Lime, syn	32 204 37.347 53.856 64.154 67.375	36 100 54 16 16	1 2 2 3 2	1 0 2 1 2	1 0 1 2	79.665 88.524 91.459 103.34 112.63	6 16 12 6	43445	000312022111	129.87 142.64 147.77	6 10 16	456	4 3 0	010	

Lampiran 8. Data JCPDS 82-1691 untuk CaO
Lampiran 9. Data JCPDS 24-0033 untuk Ca₁₀(PO₄)₆(OH)₂

24-0033 (Deleted)	Ca5(PC	14)3(0)H)								
CAS Number: 1306-06-5	Calcium F	hospha	ate Hydrox	ide							
Molecular Weight: 502.32 Volume[CD]: 530.14 <u>Dx: 3.147 Dm:</u> S.G.: P63/m (176) Cell Parameters:	Ret: Smit	<u>hetal.</u> ,	ICDD Gra	int-in-Aid, [1	973]						
a9.432 b c6.881	pati			P 1	la				6.64		
SS/FOM: E30=174(0042 41)	E LB			h kin		dl.	1 ht h		0		
I/Icor: Rad: CuKa1 Lambda: 1 54050	0		20	40	60)		80	26°		
Filter:	20	int-f	hkl	20	int-f	h	k I	20	int-f	h l	< 1
d-sp: calculated	10.822	26	100	48.541	4	2	3 0	71.673	2	4 1	0 4
Hydroxylapatite	18.800 21.742 22.841 25.338 25.878 29.116	4 6 10 3 42	$ \begin{array}{c} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 0 & 1 \\ 0 & 0 & 2 \\ 1 & 0 & 2 \end{array} $	50.428 51.204 52.031 52.031 53.201 55.201	15 10 11 12	1344300	210203042	73.656 73.951 75.580 76.007 76.388 76.965	23422	522361	2 1 4 3 1 5 4 2
	28.896 31.737 32.183 32.863	14 100 43 55	2 1 0 2 1 1 1 1 2 3 0 0	57.094 59.863 60.346 61.512	2000	232232	1 3 4 0 3 1 4 1	78.102 78.102 78.102 83.309	54443	5624	4 4 1 3 1 1 5 2 4 1
	34.046 35.421 39.167 39.762 40.394	24 5 20 2	2 0 2 3 0 1 2 1 2 1 3 0 2 2 1	61.671 62.927 63.339 63.962 64.115	46267	15533	2 4 0 2 1 0 0 4 2 3	83.309 84.200 84.389 87.447 87.447	32233	4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	33 44 56 14 16
	41.945 43.846 45.305 46.659 48.044	5 4 3 24 12	1 3 1 1 1 3 2 0 3 2 2 2 1 3 2	64.937 65.192 66.362 69.607 71.522	64223	53454	1 1 3 2 1 3 1 2 3 1	87.962 88.373 96.640	2 4 2	232	3 5 5 2 2 6

Lampiran 10. Data JCPDS 09-0169 untuk ß-Ca₃(PO₄)₂

				071							
09-0169								Wa	voleng	th=	1
Ca3(PO4)2				d(A)	int.	n	K 1	d(A)	int	h	
aiston Bhoushata											
alcium Phosphale				0.10	12	. 6	14	2.103	- 2	1	1
				0.49	10	1	0 4	2.076			1
				0.22	. 0	0	0 0	2.068		3	
Whitlockite, syn				5.21	50	1	1 0	2.001	0	- 4	
tad : CuKa13: 1.54056 Filt	er Mono	d-s	Cuinier 114.6	4.80	2	13	1 3	2.033	10	0	1
	Construction of the		12/2/10/25 12/12	4.39	8	- 2	0 Z	2.023	0	3	
Jut off: 50.0 Int.: Film	Me	07.2		4.15	4	0	1.8	2.017	4	3	1
Ref. de Wolff, P., Technisch	Physische (lienst, D	olft, The	4.060	16	0	2.4	2.000	8	2	-
lietherlands, ICDD Grant-in-	Aid (1957)			4.000	4	1	16	1.970	2	4	1
internet and a second second second				3.450	25	- 5	0 10	1.946	- 4	-4	1
		191121		3.400	- 4	2	1 1	1.933	20	-4	1
Sys.; Rhombohedral	S.G. R3c	(167)		3.360	10	1	2 2	1.895	15	2	1
10 400 h	~ 37.30		P- 9 6049	3.250	8	1	1 9	1.879	14	-4	1
10.429 0	6. 37.30	~	G. 3.0042	3.210	55	2	14	1.830	12	0	1
c 8:	15	Z: 21	mp:	3.110	2	1	2 5	1.812	6	3	- 2
			10140	3.010	16	3	0 0	1,798	6	5	1
ter ibid.				2.880	100	0	2.10	1.781	6	4	1
				2.757	20	1	28	1.774	8	0	1
	Contraction and a			2,710	10	3	0 6	1,738	4	3	1
Dx: 3.072 Dm: 3.120	SS/FOM	F30 = 5	4(0.0147, 38)	2.674	8	1	1 12	1.728	25	2	1
		-		2.607	65	2	2 0	1.711	8	3	10
an: 1.625 mot. 1.529 e	F P	agn - 2V	en e	2.562	6	0	1 14	1.685	8	5	1
Ref. Dana's System of Mine	ralogy, 7th E	d. 11, 68	4 (1951)	2.663	8	2	2 3	1.665	4	4	1
and the second s			- A - D - D - D - D - D - D - D - D - D	2.520	12	2	1 10	1.637	6	2	
				2,499	6	1	3 1	1.625	6	2	2
Color: Coloriess white gray	vallow			2.407	10	1	2.11	1.603	6	4	3
Sample obtained by beating	a commercia	al sample	Manariv	2 376	6	3	1.6	1.600	- 4	. 6	1
sostructural with carite DSC	BRG1 Mail	dated by	calculated	2 283	10	1	0.16	1.552	12		
callace 42,577 Cae ICSD 6	01 /DOE 70	20651 (Carical	2 240	4	- A -	1 15	1 532	4		
tate reference. Please Evel	om of Minor	stored). S	Ed D	2.249	-	÷.	4 2	1.630	- 2	-	17
THE LEGELERING THE PARTY OF A	and Plannin	Guidean	of	9.405		2	2 4	1.520	- 2		1
184 (4664) Stoughterst ordered	And a second sec	LOY BURNING	UI.	4.190	14			1.909	-	.0	19
384 (1951). Structural refere	LOCAL BRIDE	840.40		1. 1.0.0	4.75	- 10	AL 4 12	4 455			

d(A) Int h K I 1.440 4 0 420 1.429 4 0 516 1.414 4 3 4 8 1.409 6 5 2 6 1.387 4 1 514

the second

© 2001 JCPDS-International Centre for Diffraction Data. All rights reserved PCPDFWIN v. 2.2

Lampiran 11. Data JCPDS 35-0180 untuk Ca₁₀(PO₄)₆CO₃

Lampiran 12. Data AM 250-253 untuk Ca₁₈Mg₂H₂(PO₄)₁₄

Whitlockite Diffraction data computed using the structure from the paper listed below, along with the cell parameters refined from single crystal data of R070675 Calvo C, Gopal R American Mineralogist 60 (1975) 120-133 The crystal structure of whitlockite from the Palermo quarry 90.000 120.000 CELL PARAMETERS: 10.3470 10.3470 37.0890 90.000 SPACE GROUP: R3c X-RAY WAVELENGTH: 1.541838 BOUNDS ON TWO THETA: 5.0 90.0 LIMITS IMPOSED ON THE INDICES ARE: +/- 8 +/- 8 +/- 34 MAX. ABS. INTENSITY / VOLUME**2: 10.30346263 The INTENSITY cut off value is 1.00 2-THETA 10.97 13.74 14.33 17.14 18.59 21.58 22.03 26.00 26.43 26.76 27.67 28.05 INTENSITY 6.87 29.70 1.48 42.84 1.20 2.38 14.06 D-SPACING 8.0682 6.4435 6.1815 5.1735 4.1177 4.03413 3.4270 8.3728 3.317 3.12234 3.0809 2.98570 2.65868 2.5405 2.5868 2.55010 2.4797 2.3869 2.5868 2.55010 2.4797 2.3869 2.5868 2.55010 2.4797 2.3869 2.2240 2.2240 2.1775 2.1478 2.06605 2.06605 2.00605 2.00526 2.0070 1.98311 1.9514 1.9176 1.8643 1.86643 1.66961 1.66716 1.66525 1.662416 1.66716 1.56857 1.54857 1.55380 H01011001211213010312 K10011120121120223012 L 2 4 6038 ă 10 1 2 9 27.67 28.05 28.98 29.91 31.31 32.75 33.32 33.32 33.78 34.68 450 10 8 6 12 0 34.68 35.33 35.45 35.91 36.23 37.46 37.46 37.64 37.70 39.52 40.18 14 3 10 0221112211024031100320322414 1213320014209023902294229140194112015390909041950921425 1 4 116 146 152 94 122 140 18 16 40.43 40.56 41.207 42.07 42.07 43.85 43.98 44.12 43.85 43.98 44.12 43.85 43.98 44.12 44.5.74 45.74 45.74 45.80 447.05 47.41 47.50 47.45 47.45 128 4 12 5 0 3 10 1214035402320315242043 18 8 6 20 10 29 48.854 48.854 48.854 551.215 51.75 51.971 552.118 551.971 552.118 555.68 555.55 555.55 555.55 555.55 555.55 555.55 555.55 555.55 555.55 557.97 555.55 557.97 555.55 557.97 555.55 557.97 555.55 557.97 555.55 557.97 555.55 557.97 555.55 557.97 555.55 557.97 555.55 557.97 555.55 557.97 555.55 557.55 555.55 557.55 555.55 557.55 555.55 557.55 555.55 557.55 555.55 557.55 555.55 557.55 555.55 557.55 555.55 557.55 555.55 555.55 557.55 555.55 557.55 555.55 557.55 555.55 557.55 555.55 555.55 555.55 555.55 557.55 555.555.55 55 4 11 0 20 18 18 16 8 4 12 14 10 16 9 8 4 10 16 8 4528 60.06 60.16 60.94 123 61.43 61.58 62.15 63.99 65.00 22 13032 4.28 6 4 5 040 65.32 4.82 1.4285 20 18 0 4

66.61 66.95 66.95 68.09 68.34 68.54 68.74 71.80 72.08 72.51 72.65 73.18 73.57 74.11 74.27 76.12 76.64 76.75 76.89 77.15 77.33 77.50 78.96 80.50 81.01 81.73 81.80 81.82 82.26 84.89 85.05 86.94 87.38 87.44 87.63 88.18	5.07 2.94 5.49 2.12 1.14 1.13 1.30 1.25 1.42 1.19 1.18 1.18 3.72 1.05 1.83 2.12 6.52 1.09 1.41 1.44 1.97 1.52 3.19 1.55 1.94 1.51 3.14 1.56 1.14 3.86 2.12 6.18 2.08 1.16 1.38	1.4040 1.3977 1.3770 1.3770 1.3776 1.3691 1.3656 1.3146 1.3015 1.3015 1.2934 1.2771 1.2505 1.2793 1.2771 1.2505 1.2433 1.2418 1.2399 1.2316 1.2124 1.1931 1.1869 1.1783 1.1775 1.1772 1.1720 1.1423 1.1405 1.1206 1.1161 1.1154 1.1080 1.080	32520411132543354452056447621237752317	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
XPOW Copyright 1993 For reference, see Downs	Bob Downs, Ra et al. (1993)	njini Swamin American M	nathan ineral	ogist 78	t Bartelme , 1104-110

Lampiran 13. Perhitungan Persentase Kristalinitas CaO dari Hasil Kalsinasi Batu Kapur Selama 12 Jam dengan Suhu 1000 °C

20	Intensitas	FWHM	d(Å)	I/I1	Keterangan
37,8443	531,60	0,31010	2,37539	100	Kristal
54,2918	271,22	0,41640	1,68830	72	-
32,6881	230,11	0,28960	2,73734	34	Amorf

Keterangan:

Luas Kurva Kristal = FWHM x Intensitas

= 0,31010 x 531,60

= 164,84916

Luas Kurva Amorf = FWHM x Intensitas

= 0,28960 x 230,11

= 66,63696

- % Kristalinitas = $\frac{\text{Luas Kurva Kristal}}{\text{Luas Kurva Kristal + Luas Kurva Amorf}} \times 100\%$
- **% Kristalinitas** = $\frac{164,84916}{164,84916 + 66,63696}$ x 100%
- **% Kristalinitas** = $\frac{164,84916}{231,48612}$ x 100%
- **% Kristalinitas** = 0,71214x 100%
- **% Kristalinitas** = 71,214%

Lampiran 14. Perhitungan Persentase Kristalinitas CaO dari Hasil Kalsinasi Batu Kapur Selama 16 Jam dengan Suhu 1000 °C

20	Intensitas	FWHM	d(Å)	I/I1	Keterangan
54,1193	390,52	0,34270	1,69327	100	-
37,6200	738,41	0,41860	2,38904	75	Kristal
32,4600	262,14	0,43340	2,75605	23	Amorf

Keterangan:

Luas Kurva Kristal = FWHM x Intensitas

= 0,41860 x 738,41

= 309,09424

Luas Kurva Amorf = FWHM x Intensitas

= 0,43340 x 262,14

= 113,59414

% Kristalinitas = $\frac{\text{Luas Kurva Kristal}}{\text{Luas Kurva Kristal + Luas Kurva Amorf}} x 100\%$ **% Kristalinitas** = $\frac{309,09424}{309,09424 + 113,59414}$ x 100%

% Kristalinitas = $\frac{309,09424}{422.68838}$ x 100%

% Kristalinitas = 0,73127 x 100%

% Kristalinitas = 73,127%

Lampiran 15. Perhitungan Persentase Kristalinitas CaO dari Hasil Kalsinasi Batu Kapur Selama 20 Jam dengan Suhu 1000 °C

20	Intensitas	FWHM	d(Å)	I/I1	Keterangan
37,7315	906,45	0,39790	2,38223	100	Kristal
54,2246	846,72	0,38430	1,69023	88	-
32,5848	315,30	0,39620	2,74578	33	Amorf

Keterangan:

Luas Kurva Kristal = FWHM x Intensitas

= 0,39790 x 906,45

= 360,65656

Luas Kurva Amorf = FWHM x Intensitas

= 0,39620 x 315,30

= 124,92186

- % Kristalinitas = $\frac{\text{Luas Kurva Kristal}}{\text{Luas Kurva Kristal + Luas Kurva Amorf}} x 100\%$
- **% Kristalinitas** = $\frac{360,65656}{360,6565 + 124,92186}$ x 100%
- **% Kristalinitas** = $\frac{360,65656}{485,57842}$ x 100%
- **% Kristalinitas** = 0,74278x 100%
- **% Kristalinitas** = 74,278%

			$Ca_{18}Mg_2$	$H_2(PO_4)_{14}$	$Ca_{10}(P$	$O_4)_6(OH)_2$	ß-Ca₃	$(PO_4)_2$	$Ca_{10}(PG)$	$O_4)_6 CO_3$	
Dealr	20		(Magnesium	Whitlockite)	Hidro	oksiapatit	ß-Trikals	ium Posfat	Karbon	at Apatit	
Реак	20	d (A)	(M	gW)	(1	HAp)	(B -7	ГСР)	(Al	KA)	Fase
INO	(deg)		20	%	20	%	20	%	20	%	
			deg		deg		deg		deg		
1	11,1864	7,90337	10,92	97,61853	10,87	97,17156	-	-	10,80	96,54580	MgW
2	13,9387	6,34836	13,67	98,07227	-	-	-	-	-	-	MgW
3	15,6405	5,66123	14,23	90,98174	-	-	14,73	94,17857	-	-	β-TCP
4	17,2991	5,12200	17,08	98,73346	16,91	97,75075	-	-	-	-	MgW
5	20,5216	4,32439	20,28	98,82270	-	-	20,18	98,33541	-	-	MgW
6	22,1625	4,00779	21,71	97,95826	21,87	98,68020	-	-	-	-	HAp
7	23,5513	3,77450	-	-	22,95	97,44685	-	-	22,80	96,80994	HAp
8	25,3716	3,50767	-	-	-	-	-	-	25,27	99,59955	AKA
9	26,1127	3,40978	26,28	99,36339	25,85	98,99397	-	-	25,93	99,30034	MgW
10	26,8800	3,31416	26,64	99,10714	-	-	26,64	99,10714	-	-	MgW
11	27,7000	3,21788	27,61	99,67509	-	-	27,67	99,89169	-	-	β-TCP
12	28,1583	3,16654	27,91	99,11819	28,11	99,82846	-	-	-	-	HAp
13	29,0400	3,07238	28,83	99,27685	28,98	99,79338	28,76	99,03581	28,91	99,55234	HAp
14	29,4200	3,03355	-	-	-	-	29,64	99,25775	-	-	β-TCP
15	29,9575	2,98034	29,79	99,44087	-	-	29,93	99,90820	-	-	β-TCP
16	31,3338	2,85250	31,12	99,31766	-	-	30,80	98,29640	31,60	99,15759	MgW
17	32,1000	2,78614	-	-	31,82	99,12772	31,96	99,56386	32,11	99,96885	AKA
18	32,7600	2,73150	32,59	99,48107	32,25	98,44322	32,62	99,57264	32,69	99,78632	AKA
19	33,3000	2,68843	33,20	99,69969	32,98	99,03903	33,42	99,64093	-	-	MgW
20	33,8010	2,64971	33,60	99,40534	34,07	99,21044	-	-	34,00	99,41470	β-TCP
21	34,6820	2,58440	34,52	99,53289	-	-	34,87	99,46085	-	-	MgW
22	35,4000	2,53361	35,29	99,68926	35,48	99,77452	35,31	99,74576	-	-	HAp
23	35,9900	2,49341	35,69	99,16643	-	-	-	-	-	-	MgW
24	37,3200	2,40755	37,47	99,7599 <u></u> 6	-	-	37,49	99,54654	-	-	MgW
25	37,6887	2,38484	37,93	99,36382	-	-	-	-	-	-	MgW

Lampiran 16. Perhitungan Probabilitas Fase Sampel Waktu Pengadukan 1 Jam dengan Suhu Sinter 800 °C

26	38,1400	2,35765	-	-	-	-	38,58	98,85951	-	-	ß-TCP
27	39,5141	2,27877	39,45	99,83777	39,24	99,30632	39,75	99,40654	39,60	99,78308	MgW
28	40,1666	2,24325	40,17	99,99153	39,89	99,31136	40,25	99,79279	-	-	MgW
29	41,3685	2,18081	41,24	99,68937	-	-	-	-	-	-	MgW
30	42,0391	2,14756	41,85	99,55018	42,07	99,92655	-	-	-	-	HAp
31	42,4600	2,12724	-	-	-	-	42,58	99,71817	-	-	ß-TCP
32	43,3600	2,08515	43,07	99,33148	-	-	43,31	99,88468	-	-	β-TCP
33	43,8433	2,06328	43,94	99,77992	43,89	99,89359	I	-	-	-	HAp
34	44,3000	2,04306	44,14	99,63882	-	-	44,46	99,64012	-	-	ß-TCP
35	44,9025	2,01703	44,90	99,99443	-	-	44,84	99,86080	-	-	MgW
36	45,6225	1,98686	45,51	99,75341	45,35	99,40270	45,42	99,55614	-	-	MgW
37	46,3925	1,95566	46,17	99,52039	-	-	46,36	99,92994	-	-	ß-TCP
38	47,2667	1,92151	47,19	99,83772	46,80	99,01262	46,87	99,16071	-	-	MgW
39	47,8200	1,90056	48,04	99,54204	-	-	-	-	-	-	MgW
40	48,3200	1,88206	48,21	99,77235	48,18	99,54545	48,47	99,69053	-	-	MgW
41	48,7000	1,86826	48,56	99,71252	48,69	99,97946	48,62	99,83572	-	-	HAp
42	49,8000	1,82954	49,89	99,81960	49,49	99,37751	49,71	99,81927	-	-	MgW
43	50,1200	1,81860	50,04	99,84038	-	-	-	-	-	-	MgW
44	50,6400	1,80114	50,45	99,62480	50,58	99,88151	-	-	-	-	HAp
45	51,0200	1,78861	50,95	99,86279	51,38	99,29935	-	-	-	-	MgW
46	51,7238	1,76592	51,72	99,99265	52,18	99,12579	51,67	99,89598	-	-	MgW
47	53,2945	1,76592	53,11	99,65381	53,20	99,82268	53,42	99,76506	-	-	HAp
48	53,9000	1,69964	53,85	99,90723	-	-	-	-	-	-	MgW
49	54,7586	1,67501	54,79	99,94269	-	-	54,51	99,54600	-	-	MgW
50	55,3800	1,65767	55,24	99,74720	-	-	55,31	99,87360	-	-	ß-TCP
51	56,4180	1,62961	56,34	99,86174	55,96	99,18820	56,35	99,87947	-	-	ß-TCP
52	56,9171	1,61650	56,74	99,68884	57,09	99,69714	56,69	99,60099	-	-	HAp
53	57,7860	1,59425	57,80	99,97577	-	-	-	-	-	-	MgW
54	59,8383	1,54438	59,70	99,76887	59,96	99,79703	-	-	-	-	HAp
55	60,6020	1,52673	60,54	99,89769	60,55	99,91419	60,18	99,30365	-	-	HAp
56	61,1166	1,51510	60,99	99,79285	-	-	-	-	-	-	MgW
57	61,8728	1,49839	61,76	99,81769	-	-	62,15	99,55398	-	-	MgW

58	63,6975	1,45979	63,57	99,79983	63,09	99,04627	-	-	-	-	MgW
59	64,9100	1,43542	-	-	65,13	99,66221	-	-	-	-	HAp
60	65,5530	1,42289	-	-	-	-	65,93	99,42818	-	-	ß-TCP
61	66,5273	1,40439	-	-	66,51	99,97399	-	-	-	-	НАр
62	67,7560	1,38189	-	-	-	-	67,45	99,54837	-	-	ß-TCP

% Fase = $\frac{\text{Jumlah fase berdasarkan nomor peak dengan persentasw tertinggi}}{\text{Jumlah peak keseluruhan}} x 100%$ MgW = $\frac{30}{62}$ x 100% = 48,38709% HAp = $\frac{15}{62}$ x 100% = 24,19354% B-TCP = $\frac{14}{62}$ x 100% = 22,58064% AKA = $\frac{3}{62}$ x 100% = 4,83870%

			Ca ₁₈ Mg	$J_2H_2(PO_4)_{14}$	$Ca_{10}(P$	$O_4)_6(OH)_2$	₿-Ca₃	$(PO_4)_2$	$Ca_{10}(PG)$	$O_4)_6 CO_3$	
Dealr	20		(Magnesiu	n Whitlockite)	Hidro	oksiapatit	ß-Trikals	ium Posfat	Karbon	at Apatit	
reak No	20 (dag)	d (A)	(N	(IgW)	(I	HAp)	(B-]	ГСР)	(Al	KA)	Fase
INO	(deg)		20	%	20	%	20	%	20	%	
			deg		deg		deg		deg		
1	11,5700	7,64218	11,01	95,15989	10,87	93,94987	-	-	10,80	93,34485	MgW
2	14,2923	6,19209	14,37	99,45929	-	-	14,73	97,03530	-	-	MgW
3	16,0133	5,53027	-	-	-	-	15,16	94,67130	-	-	β-TCP
4	17,6714	5,01492	17,16	97,10605	16,91	95,69134	18,80	93,99680	-	-	MgW
5	20,3300	4,36471	20,42	99,55925	-	-	20,18	99,26217	-	-	MgW
6	20,8600	4,25500	-	-	-	-	-	-	21,64	96,39556	AKA
7	22,2000	4,00110	22,12	99,63963	21,78	98,10810	-	-	-	-	MgW
8	22,4875	3,95059	-	-	22,87	98,32750	-	-	-	-	HAp
9	23,8625	3,72597	-	-	-	-	23,89	99,88488	-	-	ß-TCP
10	25,7240	3,46041	26,05	98,74856	25,93	99,20555	-	-	25,27	98,23511	HAp
11	26,4543	3,36652	26,77	98,82069	-	-	26,65	99,26566	-	-	β-TCP
12	27,1650	3,28003	-	-	-	-	27,67	98,17491	-	-	β-TCP
13	28,5082	3,12847	28,06	98,2782	28,18	98,84875	28,86	98,78101	28,11	98,60320	HAp
14	29,6400	3,01153	29,92	99,0641	-	-	29,64	100,0000	-	-	β-TCP
15	30,3087	2,94660	-	-	-	-	30,15	99,47638	-	-	β-TCP
16	31,6694	2,82303	31,32	98,89672	31,82	99,52671	31,96	99,09073	31,60	99,78086	AKA
17	32,4200	2,75936	32,76	98,96214	32,25	99,47563	32,11	99,04380	32,11	99,04380	HAp
18	33,0330	2,70954	33,33	99,19819	32,98	99,83955	32,62	98,74973	32,76	99,17355	HAp
19	33,6600	2,66049	33,80	99,40828	-	-	33,42	99,28698	-	-	MgW
20	34,1800	2,62120	34,73	98,41635	34,07	99,67817	-	-	34,00	99,47337	HAp
21	35,0171	2,56043	35,35	99,05827	-	-	34,87	99,57991	-	-	ß-TCP
22	35,7600	2,50892	35,98	99,38854	35,55	99,41275	35,31	98,74161	-	-	HAp
23	36,3000	2,47283	36,28	99,94490	-	-	-	-	-	-	MgW
24	37,5000	2,39641	-	-	-	-	37,49	99,97333	-	-	β-TCP
25	38,0460	2,36326	38,24	99,49267	-	-	38,29	99,34708	-	-	MgW

Lampiran 17. Perhitungan Probabilitas Fase Sampel Waktu Pengadukan 1 Jam dengan Suhu Sinter 900 °C

26	38,5000	2,33643	-	-	-	-	38,58	99,79263	-	-	ß-TCP
27	39,8206	2,26194	-	-	39,89	99,82602	39,74	99,79759	39,60	99,44601	НАр
28	40,5516	2,22494	40,20	99,13295	-	-	40,69	99,65986	-	-	ß-TCP
29	41,7316	2,16267	41,39	99,18143	42,07	99,19562	42,10	99,12494	-	-	HAp
30	42,3450	2,13275	42,11	99,14503	42,36	99,96458	42,58	99,44809	-	-	HAp
31	42,8000	2,11112	-	-	-	-	42,95	99,65075	-	-	ß-TCP
32	43,6800	2,07061	-	-	-	-	43,45	99,47344	-	-	ß-TCP
33	44,1100	2,05142	-	-	43,89	99,50124	-	-	-	-	HAp
34	44,5400	2,03261	44,39	99,66322	44,40	99,68567	44,33	99,52851	-	-	HAp
35	45,2533	2,00221	-	-	45,35	99,78676	45,42	99,63298	-	-	HAp
36	45,9458	1,97363	45,78	99,63914	-		45,56	99,16031	-	-	MgW
37	47,6031	1,90871	47,43	99,63636	-	-	-	-	-	-	MgW
38	48,1600	1,88794	48,47	99,36042	48,11	99,89617	-	-	-	-	HAp
39	48,6600	1,86970	48,88	99,54991	48,69	99,93838	48,47	99,60953	-	-	HAp
40	49,1800	1,85114	49,13	99,89833	49,56	99,23325	49,71	98,93381	-	-	MgW
41	50,0800	1,81996	50,27	99,98003	-	-	-	-	-	-	MgW
42	50,4000	1,80915	50,79	99,23213	50,58	99,64412	-	-	-	-	HAp
43	51,0900	1,78633	51,20	99,78515	-	-	50,95	99,72597	-	-	MgW
44	51,4000	1,77628	51,77	99,28530	51,31	99,82490	51,67	99,47745	-	-	HAp
45	52,0591	1,75533	51,98	99,84805	52,11	99,90232	-	-	-	-	HAp
46	53,6332	1,70747	53,48	99,71435	53,27	99,32280	53,42	99,60248	-	-	MgW
47	54,1600	1,69210	54,08	99,85228	-	-	54,51	99,35791	-	-	MgW
48	55,0800	1,66599	54,93	99,72766	-	-	55,31	99,58416	-	-	MgW
49	55,7550	1,64741	-	-	55,96	99,63366	56,33	98,97922	-	-	HAp
50	56,7266	1,62148	-	-	-	-	56,69	99,93458	-	-	ß-TCP
51	57,2400	1,60815	-	-	57,20	99,93011	57,35	99,80819	-	-	HAp
52	58,1408	1,58536	58,00	99,759201	58,15	99,98417	58,36	99,62440	-	-	HAp
53	58,6505	1,57279	-	-	58,80	99,74574	58,58	99,87979	-	-	ß-TCP
54	59,7400	1,54668	-	-	-	-	59,89	99,74954	-	-	β-TCP
55	60,1785	1,53646	60,17	99,98587	60,04	99,76985	60,18	99,99750	-	-	β-TCP
56	60,5200	1,52860	-	-	60,47	99,91738	-	-	-	-	НАр
57	60,9000	1,51997	-	-	-	-	60,84	99,90147	-	-	ß-TCP

58	61,2000	1,51324	61,43	99,62559	-	-	-	-	-	-	MgW
59	61,5050	1,50646	-	-	61,64	99,78098	-	-	-	-	HAp
60	62,1930	1,49144	-	-	-	-	62,15	99,93086	-	-	ß-TCP
61	64,0083	1,45345	-	-	64,04	99,95049	-	-	-	-	HAp
62	65,2950	1,42789	-	-	65,05	99,62471	-	-	-	-	HAp
63	65,8966	1,41630	-	-	-	-	65,93	99,94934	-	-	ß-TCP
64	66,7200	1,40081	-	-	66,51	99,68525	-	-	-	-	HAp
65	66,9412	1,39671	-	-	-	-	67,45	99,24566	-	-	ß-TCP

 $\beta \text{-TCP} = \frac{20}{65} \times 100\% = 30,76923\%$

AKA $=\frac{2}{65}x \ 100\% = 3,07692\%$

% Fase = $\frac{\text{Jumlah fase berdasarkan nomor peak dengan persentasw tertinggi}}{\text{Jumlah peak keseluruhan}} x 100\%$ MgW = $\frac{17}{65} x 100\% = 26,15384\%$ HAp = $\frac{26}{65} x 100\% = 40,0000\%$

66

			$Ca_{18}Mg_2$	$H_2(PO_4)_{14}$	$Ca_{10}(P$	$O_4)_6(OH)_2$	₿-Ca₃	$(PO_4)_2$	$Ca_{10}(PG)$	$O_4)_6 CO_3$	
Dealr	20		(Magnesium	Whitlockite)	Hidro	oksiapatit	ß-Trikals	ium Posfat	Karbon	at Apatit	
reak No	20 (dag)	d (A)	(M	gW)	(I	HAp)	(B-]	ГСР)	(Al	KA)	Fase
INO	(deg)		20	%	20	%	20	%	20	%	
			deg		deg		deg		deg		
1	11,0700	7,98621	10,95	98,91598	10,82	97,74164	-	-	10,77	97,28997	MgW
2	13,8350	6,39571	13,71	99,09649	-	-	-	-	-	-	MgW
3	15,5300	5,70127	14,29	90,72762	-	-	14,66	94,39793	-	-	β-TCP
4	17,1510	5,16590	-	-	16,86	98,30330	Ι	-	16,79	97,89516	HAp
5	18,4850	4,79599	18,51	99,86493	18,83	08,16781	18,76	98,53411	18,71	98,79743	MgW
6	19,7400	4,49382	-	-	21,87	90,46746	-	-	-	-	HAp
7	20,4000	4,34989	20,33	99,65686	-	-	-	-	20,16	98,82352	MgW
8	22,0000	4,03702	21,50	97,72727	21,78	99,00000	-	-	21,63	98,31818	HAp
9	23,3690	3,80353	-	-	22,88	97,90748	-	-	22,76	97,39398	НАр
10	25,3600	3,50925	-	-	25,38	99,92119			25,24	99,52681	HAp
11	26,0187	3,42188	25,85	99,35162	25,90	99,54378	25,36	97,46835	25,86	99,39005	HAp
12	26,8400	3,31901	26,65	99,29210	-	-	26,90	99,77695	-	-	β-TCP
13	28,1000	3,17298	27,89	98,93238	28,11	99,96442	27,67	98,46975	28,08	99,92882	HAp
14	28,9200	3,08485	-	-	28,94	99,93089	28,89	99.89626	-	-	HAp
15	29,6800	3,00757	29,78	99,66420	-	-	29,57	99.62938	-	-	MgW
16	31,2600	2,85906	31,16	99,68010	-	-	Ι	-	31,60	98,92405	MgW
17	32,0000	2,79461	32,55	98,31029	31,85	99,53125	31,52	98,50000	32,16	99,50248	HAp
18	32,9600	2,71538	33,13	99,48686	32,92	99,87864	Ι	-	32,70	99,21116	HAp
19	34,4453	2,60161	34,51	99,81251	34,09	98.96850	33,42	97,02339	33,96	98,59109	MgW
20	35,7325	2,51079	35,24	98,62170	35,48	99,29336	35,28	98.73364	35,26	98,67767	НАр
21	37,6833	2,38517	37,49	99,48704	-	-	37,44	99,35435	-	-	MgW
22	39,9000	2,25762	39,98	99,79989	39,83	99,82456	39,71	99,52380	39,55	99,12280	HAp
23	41,2400	2,18731	41,27	99,92730	-	-	40,97	99.34529	-	-	MgW
24	42,0483	2,14771	41,85	99,52839	42,04	99,98026	42,06	99,97218	-	-	HAp
25	43,9600	2,05807	43,60	99,18107	43,91	99,88626	-	-	-	-	НАр

Lampiran 18. Perhitungan Probabilitas Fase Sampel Waktu Pengadukan 2 Jam dengan Suhu Sinter 800 °C

26	44,6000	2,03001	44,69	99,79861	-	-	44,41	99,57399	-	-	MgW
27	45,4200	1,99525	45,49	99,84612	45,41	99,97798	45,52	99,78031	-	-	НАр
28	46,8828	1,93635	47,16	99,41221	46,74	99,69541	46,54	99,26881	-	-	НАр
29	48,2357	1,88515	48,55	99,35262	48,12	99,76013	48,42	99,61937	-	-	НАр
30	49,6080	1,83617	49,93	99,33907	49,53	99,84276	49,70	99,81488	-	-	НАр
31	50,6250	1,80164	50,51	99,77283	50,52	99,79259	-	-	-	-	НАр
32	51,3800	1,77692	51,45	99,86394	51,32	99,88322	51,52	99,72826	-	-	НАр
33	52,1800	1,75155	-	-	52,18	100,0000	-	-	-	-	НАр
34	53,2654	1,71839	53,13	99,74580	53,26	99,98986	53,40	99,74794	-	-	НАр
35	56,1233	1,63747	56,33	99,63305	55,98	99,74466	56,28	99,72157	-	-	НАр
36	57,2800	1,60712	57,64	99,37543	57,14	99,75558	56,86	99,26675	-	-	НАр
37	57,9200	1,59088	-	-	58,08	99,72451	58,36	99,24605	-	-	НАр
38	59,9400	1,54200	59,74	99,66633	59,98	99,93331	60,15	99,65087	-	-	НАр
39	61,7383	1,50133	61,85	99,81940	61,75	99,98105	61,62	99,80838	-	-	НАр
40	63,1600	1,47091	63,60	99,30817	63,04	99,81000	63,32	99,74731	-	-	НАр
41	64,0975	1,45164	-	-	64,05	99,92589	-	-	-	-	НАр
42	65,1400	1,43091	-	-	65,06	99,87718	65,27	99,80082	-	-	HAp
43	66,4950	1,40500	_	-	66,47	99,96240	-	-	-	-	HAp

 $\% \text{ Fase} = \frac{\text{Jumlah fase berdasarkan nomor peak dengan persentasw tertinggi}}{\text{Jumlah peak keseluruhan}} \times 100\%$ $MgW = \frac{10}{43} \times 100\% = 23,25581\% \qquad \text{AKA} = \frac{0}{43} \times 100\% = 0,00000\%$ $HAp = \frac{31}{43} \times 100\% = 72,09302\% \qquad \text{B-TCP} = \frac{2}{43} \times 100\% = 4,65116\%$

			$Ca_{18}Mg_2$	$H_2(PO_4)_{14}$	$Ca_{10}(P$	$O_4)_6(OH)_2$	ß-Ca ₃	$(PO_4)_2$	$Ca_{10}(PG)$	$O_4)_6 CO_3$	
Dealr	20		(Magnesium	Whitlockite)	Hidro	oksiapatit	ß-Trikals	ium Posfat	Karbon	at Apatit	
Peak	20	d (A)	(M	gW)	(I	HAp)	(B-7	ГСР)	(Al	KA)	Fase
INO	(deg)		20	%	20	%	20	%	20	%	
			deg		deg		deg		deg		
1	10,8130	8,17544	10,95	98,74885	10,82	99,93530	-	-	10,80	99,87977	HAp
2	13,5260	6,54112	13,71	98,65791	-	-	14,73	91,82620	-	-	MgW
3	16,8525	5,25672	17,05	98,84164	16,84	99,92582	-	-	16,82	99,80715	HAp
4	21,6512	4,10126	21,93	98,72868	21,71	99,72915	-	-	21,56	99,57877	HAp
5	22,7200	3,91069	22,29	98,10739	-	-	-	-	-	-	MgW
6	23,1050	3,84639	-	-	22,87	98,98290	23,89	96,71410	22,80	98,67993	HAp
7	24,9800	3,56176	-	-	25,32	98,65718		-	25,36	98,50157	HAp
8	25,6789	3,46639	25,93	99,03162	25,85	99,33810	-	-	25,93	99,03162	HAp
9	26,3400	3,38087	26,29	99,81017	-	-	26,36	99,92412	-	-	β-TCP
10	27,7379	3,21357	27,53	99,25648	-	-	27,67	99,75520	28,12	98,64118	β-TCP
11	28,4400	3,13582	27,79	97,71448	28,11	98,83966	27,67	97,29254	-	-	HAp
12	28,7400	3,10376	-	-	28,98	99,17184	28,91	99,41196	-	-	HAp
13	29,4743	3,02809	29,78	98,97347	-	-	29,62	99,50810	-	-	β-TCP
14	30,4000	2,93795	-	-	-	-	30,15	99,17763	-	-	β-TCP
15	30,8758	2,89376	31,16	99,08793	-	-	30,80	99,75450	-	-	β-TCP
16	31,6068	2,82848	-	-	31,72	99,54897	31,96	98,89486	31,51	99,69373	AKA
17	31,9800	2,79632	-	-	32,18	99,37849	-	-	32,20	99,31677	HAp
18	32,7137	2,73526	32,55	99,49959	32,80	99,73689	32,62	99,71357	32,44	99,16334	HAp
19	33,8800	2,64372	33,56	99,05548	-	-	-	-	33,93	99,85263	AKA
20	34,2400	2,61674	34,51	99,21761	34,10	99,59112	-	-	-	-	НАр
21	35,0800	2,55598	35,24	99,54597	35,10	99,94301	-	-	34,87	99,40136	НАр
22	35,4400	2,53084	35,67	99,35520	35,45	99,97179	35,31	99,63318	35,26	99,49209	HAp
23	37,2800	2,41004	37,49	99,43985	-	-	37,49	99,43985	-	-	MgW
24	37,6800	2,38537	38,00	99,15789	-	-	38,29	98,40689	-	-	MgW
25	39,0200	2,30649	-	-	39,14	99,69340	-	-	-	-	HAp

Lampiran 19. Perhitungan Probabilitas Fase Sampel Waktu Pengadukan 2 Jam dengan Suhu Sinter 900 °C

26	39,6175	2,27307	39,96	99,14289	39,70	99,79219	39,87	99,36669	39,51	99,72865	HAp
27	40,9660	2,20130	41,27	99,26338	40,96	99,98535	40,98	99,96583	-	-	HAp
28	41,7293	2,16278	41,94	99,49761	41,93	99,52134	42,07	99,19015	-	-	HAp
29	43,4200	2,08240	43,09	99,23998	-	-	43,40	99,95393	-	-	ß-TCP
30	43,6600	2,07151	43,96	99,31756	43,82	99,63486	-	-	-	-	HAp
31	44,2950	2,04328	44,11	99,58234	44,40	99,76351	44,47	99,60647	-	-	HAp
32	45,1473	2,00667	45,49	99,24664	45,27	99,72895	45,42	99,39960	-	-	HAp
33	46,5429	1,94969	-	-	46,65	99,77041	-	-	-	-	HAp
34	46,9400	1,93412	46,80	99,70174	-	-	46,87	99,85087	-	-	ß-TCP
35	47,4400	1,91490	47,16	99,40978	-	-	Ι	-	-	-	MgW
36	47,9085	1,89726	-	-	48,01	99,78858	-	-	-	-	HAp
37	48,3600	1,88059	48,55	99,60865	48,50	99,71134	-		-	-	HAp
38	49,3014	1,84686	-	-	49,42	99,76001	49,13	99,65234	-	-	HAp
39	50,2980	1,81258	50,00	99,40753	50,51	99,58028	49,71	98,83096	-	-	HAp
40	51,1128	1,78558	50,87	99,21193	51,31	99,61566	-	-	-	-	HAp
41	51,8900	1,76065	51,67	99,57602	52,11	99,57781	51,67	99,57602	-	-	HAp
42	52,9386	1,72822	53,20	99,50864	53,13	99,63975	-	-	-	-	HAp
43	53,4600	1,71259	53,71	99,53453	53,42	99,92517	53,40	99,88776	-	-	HAp
44	54,3266	1,68730	54,58	99,53572	54,36	99,93855	54,51	99,66354	-	-	HAp
45	55,7540	1,64774	55,31	99,20364	55,89	99,75666	-	-	-	-	HAp
46	56,1533	1,63666	56,18	99,95681	-	-	56,28	99,77487	-	-	MgW
47	56,9750	1,61500	56,84	99,76305	57,05	99,86853	-	-	-	-	HAp
48	57,8300	1,59314	57,64	99,67145	57,93	99,82737	57,97	99,75849	-	-	HAp
49	59,5658	1,55079	59,75	99,69171	59,73	99,72509	59,07	99,16764	-	-	HAp
50	60,2400	1,53503	60,55	99,48802	60,30	99,90049	60,69	99,25852	-	-	HAp
51	61,4788	1,50704	61,78	99,51246	61,46	99,96942	61,62	99,77089	-	-	HAp
52	62,8400	1,47763	-	-	62,88	99,93638	62,10	98,82240	-	-	HAp
53	63,3600	1,46675	-	-	63,33	99,95265	-	-	-	-	HAp
54	63,8812	1,45603	63,60	99,55980	63,92	99,93929	63,81	99,88854	-	-	HAp
55	64,8500	1,43660	_	-	64,89	99,93835	-	-	-	-	HAp
56	66,2183	1,41020			66,26	99,92453	65,89	99,50421	-	-	HAp
57	67,4186	1,38798	-	-	66,30	98,34081	-	-	-	-	HAp

% Fase = $\frac{\text{Jumlah fase berdasarkan nomor peak dengan persentasw tertinggi}}{\text{Jumlah peak keseluruhan}} x 100%$ MgW = $\frac{6}{57} x 100\% = 10,52631\%$ HAp = $\frac{42}{57} x 100\% = 73,68421\%$ B-TCP = $\frac{7}{57} x 100\% = 12,28070\%$ AKA = $\frac{2}{57} x 100\% = 3,50877\%$

			$Ca_{18}Mg_{2}$	$H_2(PO_4)_{14}$	$Ca_{10}(P$	$O_4)_6(OH)_2$	ß-Ca₃	$(PO_4)_2$	$Ca_{10}(PG)$	$O_4)_6 CO_3$	
Dealr	20		(Magnesium	Whitlockite)	Hidro	oksiapatit	ß-Trikals	ium Posfat	Karbon	at Apatit	
reak No	$\frac{20}{(dac)}$	d (A)	(Mg	gW)	(I	HAp)	(B -7	ГСР)	(Al	KA)	Fase
INO	(deg)		20	%	20	%	20	%	20	%	
			deg		deg		deg		deg		
1	10,9605	8,06575	10,92	99,63049	10,87	99,17430	-	-	10,80	98,53365	MgW
2	13,7016	6,45768	13,70	99,98832	-	-	14,65	93,52627	-	-	MgW
3	17,0600	5,19325	17,07	99,94141	16,84	98,71043	-	-	16,84	98,71048	MgW
4	20,2314	4,38576	20,27	99,80957	-	-	20,18	99.74593	-	-	MgW
5	21,8769	4,05646	21,95	99,66697	21,78	99,55706	-	-	21,64	98,91712	MgW
6	23,2790	3,81803	-	-	22,87	98,24305	-	-	-	-	HAp
7	25,1160	3,54279	-	-	25,42	98,80409	-	-	-	-	HAp
8	25,8367	3,44557	25,87	99,87127	25,85	99,94854	-	-	25,93	99,64018	HAp
9	26,5400	3,35584	26,60	99,77443	-	-	26,63	99,66203	-	-	MgW
10	27,3800	3,25476	27,53	99,45513	-	-	-	-	-	-	MgW
11	27,8735	3,19825	27,88	99,97668	28,11	99,15866	27,67	99,26991	-	-	MgW
12	28,7200	3,10588	-	-	-	-	-	-	28,74	99,93041	AKA
13	29,1400	3,06206	-	-	28,93	99,27934	28,90	99,17638	-	-	HAp
14	29,6773	3,00783	29,74	99,76462	-	-	29,57	99,63844	-	-	MgW
15	31,0472	2,87817	31,13	99,73401	-	-	30,87	99,42925	-	-	MgW
16	31,8000	2,81173	-	-	31,92	99,62406	31,96	99,49937	31,60	99,37106	HAp
17	32,4200	2,75936	32,58	99,50890	32,18	99,25971	32,62	99,38687	32,11	99,04380	MgW
18	32,9600	2,71538	33,11	99,54696	32,91	99,84830	-	-	32,69	99,18082	HAp
19	33,5200	2,67128	33,57	99,85105	-	-	33,42	99,70167	-	-	MgW
20	33,9600	2,63128	-	-	-	-	-	-	33,96	100,0000	AKA
21	34,3900	2,60567	34,50	99,68115	34,07	99,06949	34,87	98,62345	34,00	98,86594	MgW
22	35,1200	2,55316	35,08	99,88610	-	-	-	-	-	-	MgW
23	35,6912	2,51360	35,72	99,91937	35,45	99,32420	35,31	98,93194	-	-	MgW
24	37,3887	2,40329	37,46	99,8096 <u></u> 6	-	-	37,49	99,72979	-	-	MgW
25	37,8400	2,37565	37,99	99,60515	-	-	38,23	98.97985	-	-	MgW

Lampiran 20. Perhitungan Probabilitas Fase Sampel Waktu Pengadukan 3 Jam dengan Suhu Sinter 800 °C

26	39,1600	2,29856	-	-	39,17	99,97447	-	-	-	-	HAp
27	39,8862	2,25837	39,90	99,96541	39,82	99,8340	39,75	99,6585	39,60	99,2824	MgW
28	41,1013	2,19437	41,18	99,80888	-	-	40,98	99,70487	-	-	MgW
29	41,7750	2,16052	41,82	99,89239	-	-	-	-	-	-	MgW
30	42,2000	2,13974	-	-	42,00	99,52606	42,03	99,59715	-	-	ß-TCP
31	43,0800	2,09805	43,10	99,95359			43,20	99,72222	-	-	MgW
32	43,5000	2,07876	43,56	99,86225	-	-	43,42	99,81609	-	-	MgW
33	43,9000	2,06074	43,85	99,88610	43,80	99,77220	-	-	-	-	MgW
34	44,6238	2,02898	44,67	99,89657	-	-	44,40	99,49847	-	-	MgW
35	45,3312	1,99895	45,48	99,67282	45,29	99,90911	45,38	99,89246	-	-	HAp
36	46,9766	1,93270	-	-	46,70	99,41119	46,58	99,15574	-	-	HAp
37	47,4800	1,91338	47,11	99,22072	-	-	-	-	-	-	MgW
38	48,0200	1,89311	48,15	99,73001	48,11	99,81292	-	-	-	-	HAp
39	48,3800	1,87986	48,56	99,62932	48,60	99,54732	48,42	99,91738	-	-	β-TCP
40	49,5000	1,83992	-	-	49,43	99,85858	49,24	99,47474	-	-	HAp
41	49,8200	1,82885	49,90	99,83967	-	-	49,71	99,77920	-	-	MgW
42	50,3800	1,80982	50,48	99,80190	50,48	99,80190	-	-	-	-	MgW
43	50,7000	1,79915	50,88	99,64622	-	-	50,89	99,62664	-	-	MgW
44	51,4150	1,77580	51,41	99,99027	51,31	99,79577	51,67	99,50648	-	-	MgW
45	53,0178	1,72503	53,09	99,86400	53,13	99,78881	52,90	99,77781	-	-	MgW
46	53,5600	1,70963	53,72	99,70215	-	-	53,40	99,70126	-	-	MgW
47	54,4768	1,68300	54,60	99,77435	-	-	54,50	99,81651	-	-	ß-TCP
48	55,1060	1,66527	55,24	99,75742	-	-	55,27	99,70327	-	-	MgW
49	56,1325	1,63722	56,28	99,73791	55,99	99,74613	56,33	99,64938	-	-	HAp
50	56,6025	1,62474	56,81	99,65228	-	-	56,64	99,93379	-	-	ß-TCP
51	57,5117	1,60119	57,56	99,91608	57,13	99,33630	57,42	99,84055	-	-	MgW
52	59,5554	1,55103	59,67	99,80961	-	-	60,18	98,96211	-	-	MgW
53	60,3726	1,53198	60,53	99,73996	60,42	99,92154	60,36	99,97912	-	-	ß-TCP
54	61,5950	1,50448	61,18	99,32624	61,64	99,92699	61,65	99,91078	-	-	HAp
55	63,4266	1,46537	63,58	99,75872	63,02	99,35894	63,38	99,92652	-	-	β-TCP
56	66,2900	1,40885	-	-	66,37	99,87946	65,88	99,38150	-	-	HAp
57	67,4700	1,38705	-	-	-	-	67,43	99,94071	-	-	ß-TCP

% Fase =
$$\frac{\text{Jumlah fase berdasarkan nomor peak dengan persentasw tertinggi}}{\text{Jumlah peak keseluruhan}} x 100\%$$

MgW = $\frac{34}{57} x 100\%$ = 59,64912%
HAp = $\frac{14}{57} x 100\%$ = 24,56140%
 β -TCP = $\frac{7}{57} x 100\%$ = 12,28070%
AKA = $\frac{2}{57} x 100\%$ = 3,50877%

			$Ca_{18}Mg_{2}$	$H_2(PO_4)_{14}$	$Ca_{10}(P$	$O_4)_6(OH)_2$	₿-Ca₃	$(PO_4)_2$	$Ca_{10}(PG)$	$O_4)_6 CO_3$	
Dealr	20		(Magnesium	Whitlockite)	Hidro	oksiapatit	ß-Trikals	ium Posfat	Karbon	at Apatit	
Peak	20 (dag)	d (A)	(Mg	gW)	(H	HAp)	(B -7	ГСР)	(Al	KA)	Fase
INO	(deg)		20	%	20	%	20	%	20	%	
			deg		deg		deg		deg		
1	11,0803	7,97881	10,95	98,82403	10,87	98,1020	-	-	10,87	98,1020	MgW
2	13,8046	6,40973	13,67	99,02496	-	-	-	-	-	-	MgW
3	15,5144	5,70696	14,29	92,10797	-	-	-	-	-	-	MgW
4	16,9200	5,23590	17,05	99,23753	-	-	-	-	16,84	99,20278	MgW
5	20,4040	4,34905	20,27	99,34326	-	-	20,09	98,46108	-	-	MgW
6	22,0400	4,02979	21,94	99,54627	21,76	98,72958	21,73	98,59346	21,76	98,72958	MgW
7	23,4306	3,79367	-	-	-	-	-	-	22,86	97,56472	AKA
8	25,2663	3,52205	-	-	-	-	-	-	25,36	99,63052	AKA
9	25,9806	3,42681	25,87	99,57429	25,88	99,61278	-	-	25,87	99,57429	HAp
10	26,3800	3,37583	26,27	99,58301	-	-	-	-	-	-	MgW
11	26,7362	3,33166	26,63	99,60278	-	-	-	-	-	-	MgW
12	27,6200	3,22702	27,54	99,71035	-	-	-	-	-	-	MgW
13	28,0383	3,17982	27,89	99,47108	28,13	99,67401			28,14	99,63859	HAp
14	28,4600	3,13366	-	-	-	-	28,66	99,30216	-	-	β-TCP
15	28,8400	3,09323	-	-	28,92	99,72337	-	-	28,93	99,68890	HAp
16	29,8578	2,99006	29,73	99,57197	-	-	-	-	-	-	MgW
17	30,8400	2,89703	-	-	-	-	30,97	99,58023	-	-	β-TCP
18	31,2204	2,86260	31,12	99,67841	-	-	-	-	-	-	MgW
19	31,5800	2,83082	-	-	31,76	99,43324	-	-	31,77	99,40195	HAp
20	31,9876	2,79567	-	-	32,19	99,37123	-	-	32,20	99,34037	НАр
21	32,4000	2,76102	32,58	99,44751	-	-	-	-	-	-	MgW
22	32,6600	2,73963	-	-	32,89	99,30069	-	-	32,90	99,27051	HAp
23	33,1714	2,69855	33,13	99,87519	-	-	-	-	-	-	MgW
24	33,6891	2,65826	33,59	<u>99,7058</u> 3	-	-	-	-	-	-	MgW
25	34,2000	2,61971	_	-	34,06	99,59064	34,14	99,82456	34,06	99,59064	β-TCP

Lampiran 21. Perhitungan Probabilitas Fase Sampel Waktu Pengadukan 3 Jam dengan Suhu Sinter 900 °C

26	34,5753	2,59213	34,51	99,81113	-	-	-	-	-	-	MgW
27	34,9200	2,56733	35,10	99,48717	-	-	-	-	-	-	MgW
28	35,3000	2,54055	35,25	99,85835	35,45	99,57686	-	-	35,46	99,54878	MgW
29	35,8015	2,50611	35,70	99,71649	-	-	-	-	-	-	MgW
30	36,0800	2,48740	36,01	99,77827	-	-	-	-	-	-	MgW
31	37,1400	2,41811	37,27	99,65119	-	-	37,15	99,97308	-	-	ß-TCP
32	37,5704	2,39208	37,46	99,70615	-	-	-	-	-	-	MgW
33	38,0180	2,36494	37,97	99,87374	-	-	-	-	-	-	MgW
34	39,7800	2,26415	-	-	39,79	99,97486	-	-	39,80	99,94974	HAp
35	40,0343	2,25036	39,95	99,78943	-	-	-	-	-	-	MgW
36	40,2600	2,23826	40,19	99,82613	-	-	-	-	-	-	MgW
37	40,4200	2,22977	40,31	99,72785	-	-	-	-	-	-	MgW
38	41,0000	2,19955	41,10	99,75669	-	-	40,83	99,58536	-	-	MgW
39	41,2944	2,18455	41,25	99,89247	-	-	-	-	-	-	MgW
40	41,8915	2,15478	41,81	99,80544	-	-	-	-	-	-	MgW
41	42,1600	2,14168	-	-	42,00	99,62049	-	-	-	-	HAp
42	43,3200	2,08698	43,57	99,42621	-	-	43,56	99,44903	-	-	ß-TCP
43	43,6600	2,07151	43,67	99,97710	-	-	43,59	99,83967	-	-	MgW
44	43,8600	2,06253	43,85	99,97720	43,88	99,93620	-	-	-	-	MgW
45	44,1400	2,05009	44,08	99,86406	-	-	44,29	99,66132	-	-	MgW
46	44,7400	2,02398	44,68	99,86589	-	-	-	-	-	-	MgW
47	44,9600	2,01459	44,93	99,93327	-	-	-	-	-	-	MgW
48	45,4993	1,99196	45,43	99,84768	-	-	45,16	99,25427	-	-	MgW
49	46,9400	1,93412	46,80	99,70174	-	-	46,75	99,59522	-	-	MgW
50	47,1546	1,92582	47,10	99,88421	-	-	-	-	-	-	MgW
51	48,2286	1,88541	48,16	99,85776	-	-	-	-	-	-	MgW
52	48,6000	1,87187	48,56	99,91795	-	-	-	-	-	-	MgW
53	49,6600	1,83436	-	-	49,49	99,65767	-	-	-	-	HAp
54	49,9600	1,82405	49,87	99,81985	-	-	-	-	-	-	MgW
55	50,5600	1,80380	50,44	99,76265	50,48	99,84177	-	-	-	-	HAp
56	50,8000	1,79584	50,88	99,84276	-	-	-	-	-	-	MgW
57	51,5200	1,77242	51,44	99,84472	51,26	99,49534	-	-	-	-	MgW

58	51,6800	1,76731	51,64	99,92260	-	-	-	-	-	-	MgW
59	52,8000	1,72133	52,77	99,94318	-	-	52,97	99,67906	-	-	MgW
60	53,1670	1,72133	53,09	99,85517	53,22	99,90041			-	-	НАр
61	53,5400	1,71318	53,69	99,72061	-	-	-	-	-	-	MgW
62	53,7800	1,70315	53,72	99,88843	-	-	-	-	-	-	MgW
63	54,6282	1,67870	54,58	99,91178	-	-	-	-	-	-	MgW
64	55,3193	1,65935	55,25	99,87472	-	-	-	-	-	-	MgW
65	56,3178	1,63227	56,29	99,95063	-	-	56,50	99,67753	-	-	MgW
66	56,7570	1,62068	56,78	99,95949	-	-	-	-	-	-	MgW
67	57,6900	1,59667	57,60	99,84399	57,14	99,04662	-	-	-	-	MgW
68	59,5400	1,55377	59,66	99,79886	-	-	59,15	99,34497	-	-	MgW
69	59,7265	1,54700	59,75	99,96066	-	-	-	-	-	-	MgW
70	61,7850	1,50031	61,77	99,997572	-	-	61,12	98,92368	-	-	MgW
71	63,5842	1,46213	63,58	99,99339	62,98	99,04976			-	-	MgW
72	66,4709	1,40545	_	-	-	-	64,54	97,09511	_	-	ß-TCP
73	67,6650	1,38352	-	-	-	-	67,67	99,99261	-	-	β-TCP

% Fase = $\frac{\text{Jumlah fase berdasarkan nomor peak dengan persentasw tertinggi}}{\text{Jumlah peak keeshuruhan}} \times 100\%$

Jumlah peak keseluruhan

MgW =
$$\frac{53}{73}$$
x 100% = 72,60273%
HAp = $\frac{11}{73}$ x 100% = 15,06849%
 β -TCP = $\frac{7}{73}$ x 100% = 9,58904%
AKA = $\frac{2}{73}$ x 100% = 2,73972%

Lampiran 22. Perhitungan Persentase Kristalinitas HApuntuk Waktu Pengadukan 1 Jam dengan Suhu Sinter 800 °C

Indeks Miller	20	V ₍₁₁₂₋₃₀₀₎	I ₃₀₀
112	32,25	16	164.62
300	32,98	10	104,02

 $Xc = \left\{1 - \frac{V_{112-300}}{I_{300}}\right\} \times 100\%$ $Xc = \left\{1 - \frac{16}{164,62}\right\} \times 100\%$ $Xc = \{1 - 0,09719\} \times 100\%$ $Xc = 0,90281 \times 100\%$

Xc = 90,281%

Lampiran 23. Perhitungan Persentase Kristalinitas HAp untuk Waktu Pengadukan 1 Jam dengan Suhu Sinter 900 °C

Indeks Miller	20	V ₍₁₁₂₋₃₀₀₎	I ₃₀₀
112	32,18	13	100 19
300	32,91	15	400,49

$$Xc = \left\{ 1 - \frac{V_{112-300}}{I_{300}} \right\} \times 100\%$$
$$Xc = \left\{ 1 - \frac{13}{400,49} \right\} \times 100\%$$
$$Xc = \{ 1 - 0,03246 \} \times 100\%$$

 $Xc = 0,96754 \times 100\%$

Xc = 96,674%

Lampiran 24. Perhitungan Persentase Kristalinitas HAp untuk Waktu Pengadukan 2 Jam dengan Suhu Sinter 800 °C

Indeks Miller	20	V ₍₁₁₂₋₃₀₀₎	I ₃₀₀
112	32,18	57	560.20
300	32,91	57	500,20

 $Xc = \left\{1 - \frac{V_{112-300}}{I_{300}}\right\} \times 100\%$ $Xc = \left\{1 - \frac{57}{560,20}\right\} \times 100\%$ $Xc = \{1 - 0,10174\} \times 100\%$ $Xc = 0,89826 \times 100\%$

Xc = 89,826%

Lampiran 25. Perhitungan Persentase Kristalinitas HAp untuk Waktu Pengadukan 2 Jam dengan Suhu Sinter 900 °C

Indeks Miller	20	V ₍₁₁₂₋₃₀₀₎	I ₃₀₀
112	32,18	57	624,08
300	32,91		

$$Xc = \left\{ 1 - \frac{V_{112-300}}{I_{300}} \right\} \times 100\%$$
$$Xc = \left\{ 1 - \frac{57}{624,08} \right\} \times 100\%$$
$$Xc = \{ 1 - 0,09133 \} \times 100\%$$

Xc = 0,90867 x 100%

Xc = 90,867%

Lampiran 26. Perhitungan Persentase Kristalinitas HAp untuk Waktu Pengadukan 3 Jam dengan Suhu Sinter 800 °C

Indeks Miller	20	V ₍₁₁₂₋₃₀₀₎	I ₃₀₀
112	32,18	- 13	179,36
300	32,91		

 $Xc = \left\{1 - \frac{V_{112-300}}{I_{300}}\right\} \times 100\%$ $Xc = \left\{1 - \frac{13}{179,36}\right\} \times 100\%$ $Xc = \{1 - 0,72479\} \times 100\%$ $Xc = 0, \times 100\%$

Xc = 92,573%

Lampiran 27. Perhitungan Persentase Kristalinitas HAp untuk Waktu Pengadukan 3 Jam dengan Suhu Sinter 900 °C

Indeks Miller	20	V ₍₁₁₂₋₃₀₀₎	I ₃₀₀
112	32,18	10	144,96
300	32,91		

$$Xc = \left\{1 - \frac{V_{112-300}}{I_{300}}\right\} \times 100\%$$
$$Xc = \left\{1 - \frac{10}{144,96}\right\} \times 100\%$$
$$Xc = \{1 - 0,06898\} \times 100\%$$
$$Xc = 0,93102 \times 100\%$$
$$Xc = 93,102\%$$

Lampiran 28. Perhitungan Ukuran Diameter Kisi Kristal HAp untuk Waktu Pengadukan 1 Jam dengan Suhu Sinter 800 °C

Dik: k = 0.98

$$\lambda = 1,5406 \text{ Å}$$

1. Peak 1

$$2\theta$$
 (deg) = 28,1583

 $\theta = 14,07915$

 $\cos \theta = 0,96996$

FWHM (deg)
$$= 0,38420$$

$$\beta_{deg} 2 \pi = 360 \circ \beta_{rad}$$

$$\frac{\beta_{deg} 2 \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0,38420}{360^{\circ}} 2 (3,14)$$

$$\beta_{rad} = 0,00106 (6,28)$$

$$\beta_{rad} = 0,00665$$

$$Ds_1 = \frac{k \lambda}{\beta \cos \theta}$$

$$= \frac{0,98 \times 1,5406 \text{ Å}}{(0,00665) (0,96996)}$$

$$= \frac{1,50978 \text{ Å}}{0,00645}$$

$$= 234,07441 \text{ Å}$$

 2θ (deg) = 48,7000

$\theta = 24,35000$

 $\cos \theta = 0,91104$

FWHM (deg) = 0,34500

 $2 \pi = 360^{\circ}$

$$\beta_{deg} 2 \pi = 360^{\circ} \beta_{rad}$$

$$\frac{\beta_{deg} 2 \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0,34500}{360^{\circ}} 2 (3,14)$$

$$\beta_{rad} = 0,00095 (6,28)$$

$$\beta_{rad} = 0,00596$$

$$Ds_2 = \frac{k \lambda}{\beta \cos \theta}$$

$$= \frac{0,98 \times 1,5406 \text{ Å}}{(0,00596)(0,91104)}$$

$$= \frac{1,50978 \text{ Å}}{0,00542}$$

= 27,85572 nm

 2θ (deg) = 50,64000

$\theta = 25,32000$

 $\cos \theta = 0,98251$

FWHM (deg) = 0,37500

$$\beta_{deg} 2 \pi = 360 \circ \beta_{rad}$$

$$\frac{\beta_{deg} 2 \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0.37500}{360^{\circ}} 2 (3,14)$$

$$\beta_{rad} = 0.00104 (6,28)$$

$$\beta_{rad} = 0.00653$$

$$Ds_3 = \frac{k \lambda}{\beta cos \theta}$$

$$= \frac{0.98 \times 1.5406 \text{ Å}}{(0.00653)(0.98251)}$$

$$= \frac{1.50978 \text{ Å}}{0.00641}$$

Lampiran 29. Perhitungan Ukuran Diameter Kisi Kristal HAp untuk Waktu Pengadukan 1 Jam dengan Suhu Sinter 900 °C

Dik: k = 0.98

$$\lambda = 1,5406 \text{ Å}$$

1. Peak 1

$$2\theta$$
 (deg) = 28,5082

 $\theta = 14,25141$

 $\cos \theta = 0,96922$

FWHM (deg)
$$= 0,40580$$

 $2\pi = 360^{\circ}$

$$\beta_{deg} 2 \pi = 360 \circ \beta_{rad}$$

$$\frac{\beta_{\text{deg}} 2 \pi}{360^{\circ}} = \beta_{\text{rad}}$$

$$\beta_{\text{rad}} = \frac{0.40580}{360^{\circ}} 2 (3,14)$$

$$\beta_{\text{rad}} = 0,00112 (6,28)$$

$$\beta_{\text{rad}} = 0,00703$$

$$Ds_1 = \frac{k \lambda}{\beta \cos \theta}$$

$$= \frac{0.98 \times 1.5406 \text{ Å}}{(0,00703) (0.96922)}$$

$$= \frac{1,50978 \text{ Å}}{0,00681}$$

$$= 221,70044 \text{ Å}$$

= 22,170044 nm

 2θ (deg) = 48,6600

$\theta = 24,33000$

 $\cos \theta = 0.91118$

FWHM (deg) = 0,35000

$$\beta_{deg} 2 \pi = 360^{\circ} \beta_{rad}$$

$$\frac{\beta_{deg} \ 2 \ \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0,35000}{360^{\circ}} 2 \ (3,14)$$

$$\beta_{rad} = 0,00097 \ (6,28)$$

$$\beta_{rad} = 0,00609$$

$$Ds_2 = \frac{k \ \lambda}{\beta cos\theta}$$

$$= \frac{0,98 \times 1,5406 \ \text{\AA}}{(0,00609)(0,91118)}$$

$$= \frac{1,50978 \ \text{\AA}}{0,00554}$$

 2θ (deg) = 50,40000

$\theta = 25,20000$

 $\cos \theta = 0,99773$

FWHM (deg) = 0,26000

 $2 \pi = 360^{\circ}$

$$\beta_{deg} 2 \pi = 360 \circ \beta_{rad}$$

$$\frac{\beta_{deg} 2 \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0,26000}{360^{\circ}} 2 (3,14)$$

$$\beta_{rad} = 0,00072 (6,28)$$

$$\beta_{rad} = 0,00452$$

$$Ds_3 = \frac{k \lambda}{\beta \cos \theta}$$

$$= \frac{0,98 \times 1,5406 \text{ Å}}{(0,00452)(0,99773)}$$

$$= \frac{1,50978 \text{ Å}}{0,00450}$$

$$= 335,55066 \text{ Å}$$

= 33,55510 nm

Lampiran 30. Perhitungan Ukuran Diameter Kisi Kristal HAp untuk Waktu Pengadukan 2 Jam dengan Suhu Sinter 800 °C

Dik: k = 0.98

$$\lambda = 1,5406 \text{ Å}$$

1. Peak 1

$$2\theta$$
 (deg) = 32,0000

 $\theta = 16,00000$

 $\cos \theta = 0,96126$

FWHM (deg)
$$= 1,23340$$

$$\beta_{deg} 2 \pi = 360 \circ \beta_{rad}$$

$$\frac{\beta_{\text{deg}} 2 \pi}{360^{\circ}} = \beta_{\text{rad}}$$
$$\beta_{\text{rad}} = \frac{1,23340}{360^{\circ}} 2 (3,14)$$
$$\beta_{\text{rad}} = 0,00342 (6,28)$$
$$\beta_{\text{rad}} = 0,02147$$
$$\text{Ds}_1 = \frac{k \lambda}{\beta \cos \theta}$$

$$= \frac{0,98 \times 1,5406 \text{ Å}}{(0,02147)(0,96126)}$$
$$= \frac{1,50978 \text{ Å}}{0,02063}$$
$$= 73,18371 \text{ Å}$$
$$= 7,31837 \text{ nm}$$

 2θ (deg) = 26,0187

 $\theta = 13,00950$

 $\cos\theta = 0,97433$

FWHM (deg) = 0,63460

$$\beta_{deg} 2 \pi = 360^{\circ} \beta_{rad}$$

$$\frac{\beta_{\text{deg}} 2 \pi}{360^{\circ}} = \beta_{\text{rad}}$$
$$\beta_{\text{rad}} = \frac{0,63460}{360^{\circ}} 2 (3,14)$$
$$\beta_{\text{rad}} = 0,00176 (6,28)$$
$$\beta_{\text{rad}} = 0,01105$$
$$\text{Ds}_2 = \frac{k \lambda}{\beta \cos \theta}$$

$$= \frac{0,98 \times 1,5406 \text{ Å}}{(0,01105)(0,97433)}$$
$$= \frac{1,50978 \text{ Å}}{0,01076}$$
$$= 140,31412 \text{ Å}$$
$$= 14,03141 \text{ nm}$$
3. Peak 3

 2θ (deg) = 32,9600

$\theta = 16,\!48000$

 $\cos \theta = 0,95891$

FWHM (deg) = 0,79260

 $2 \pi = 360^{\circ}$

$$\beta_{deg} 2 \pi = 360 \circ \beta_{rad}$$

$$\frac{\beta_{deg} 2 \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0,79260}{360^{\circ}} 2 (3,14)$$

$$\beta_{rad} = 0,00220 (6,28)$$

$$\beta_{rad} = 0,01381$$

$$Ds_3 = \frac{k \lambda}{\beta cos\theta}$$

$$= \frac{0,98 \times 1,5406 \text{ Å}}{(0,01381)(0,95891)}$$

$$= \frac{1,50978 \text{ Å}}{0,01324}$$

$$= 114,03172 \text{ Å}$$

Lampiran 31. Perhitungan Ukuran Diameter Kisi Kristal HAp untuk Waktu Pengadukan 2 Jam dengan Suhu Sinter 900 °C

Dik: k = 0.98

$$\lambda = 1,5406 \text{ Å}$$

1. Peak 1

$$2\theta$$
 (deg) = 32,7137

 $\theta = 16,35685$

 $\cos \theta = 0,95952$

 $2\pi = 360^{\circ}$

$$\beta_{deg} 2 \pi = 360^{\circ} \beta_{rad}$$

$$\frac{\beta_{deg} 2 \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0,36500}{360^{\circ}} 2 (3,14)$$

$$\beta_{rad} = 0,00101 (6,28)$$

$$\beta_{rad} = 0,00634$$

$$Ds_1 = \frac{k \lambda}{\beta \cos \theta}$$

$$= \frac{0,98 \times 1,5406 \text{ Å}}{(0,00634) (0,95952)}$$

$$= \frac{1,50978 \text{ Å}}{0,00608}$$

$$= 248,31907 \text{ Å}$$

= 24,83191 nm

- 2. Peak 2
 - 2θ (deg) = 25,6789

$\theta = 12,83945$

 $\cos \theta = 0,97499$

FWHM (deg) = 0,35620

 $2 \pi = 360^{\circ}$

$$\beta_{deg} 2 \pi = 360 \circ \beta_{rad}$$

$$\frac{\beta_{deg} 2 \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0,35620}{360^{\circ}} 2 (3,14)$$

$$\beta_{rad} = 0,00098 (6,28)$$

$$\beta_{rad} = 0,00615$$

$$Ds_2 = \frac{k \lambda}{\beta cos \theta}$$

$$= \frac{0,98 \times 1,5406 \text{ Å}}{(0,00615) (0,97499)}$$

$$= \frac{1,50978 \text{ Å}}{0,00599}$$

= 25,20501 nm

3. Peak 3

 2θ (deg) = 31,9800

$\theta = 15,99000$

 $\cos \theta = 0,96130$

FWHM (deg) = 0,45000

 $2 \pi = 360^{\circ}$

$$\beta_{deg} 2 \pi = 360 \circ \beta_{rad}$$

$$\frac{\beta_{deg} 2 \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0.45000}{360^{\circ}} 2 (3.14)$$

$$\beta_{rad} = 0.00125 (6.28)$$

$$\beta_{rad} = 0.00785$$

$$Ds_3 = \frac{k \lambda}{\beta \cos \theta}$$

$$= \frac{0.98 \times 1.5406 \text{ Å}}{(0.00785) (0.96130)}$$

$$= \frac{1.50978 \text{ Å}}{0.00754}$$

= 20,02361 nm

Lampiran 32. Perhitungan Ukuran Diameter Kisi Kristal HAp untuk Waktu Pengadukan 3 Jam dengan Suhu Sinter 800 °C

Dik: k = 0.98

$$\lambda = 1,5406 \text{ Å}$$

1. Peak 1

$$2\theta$$
 (deg) = 25,8367

 $\theta = 12,91835$

 $\cos \theta = 0,97468$

FWHM (deg)
$$= 0,40110$$

 $2\pi = 360^{\circ}$

$$\beta_{deg} 2 \pi = 360^{\circ} \beta_{rad}$$

$$\frac{\beta_{deg} 2 \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0.40110}{360^{\circ}} 2 (3,14)$$

$$\beta_{rad} = 0.00111 (6,28)$$

$$\beta_{rad} = 0.00697$$

$$Ds_1 = \frac{k \lambda}{\beta \cos \theta}$$

$$= \frac{0.98 \times 1.5406 \text{ Å}}{(0.00697)(0.97468)}$$

$$= \frac{1.50978 \text{ Å}}{0.00679}$$

$$= 222.35346 \text{ Å}$$

= 22,23535 nm

2. Peak 2

 2θ (deg) = 31,8000

$\theta = 15,90000$

 $\cos \theta = 0,96174$

FWHM (deg) = 0,38280

 $2 \pi = 360^{\circ}$

$$\beta_{deg} 2 \pi = 360 \circ \beta_{rad}$$

$$\frac{\beta_{deg} \ 2 \ \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0,38280}{360^{\circ}} 2 \ (3,14)$$

$$\beta_{rad} = 0,00106 \ (6,28)$$

$$\beta_{rad} = 0,00665$$

$$Ds_2 = \frac{k \ \lambda}{\beta cos\theta}$$

$$= \frac{0,98 \times 1,5406 \ \text{\AA}}{(0,00665)(0,96174)}$$

$$1,50978 \ \text{\AA}$$

$$=\frac{1,5077011}{0,00639}$$

3. Peak 3

 2θ (deg) = 32,9600

$\theta = 16,\!48000$

 $\cos \theta = 0,95891$

FWHM (deg) = 0,40440

 $2 \pi = 360^{\circ}$

$$\beta_{deg} 2 \pi = 360 \circ \beta_{rad}$$

$$\frac{\beta_{deg} \ 2 \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0,40440}{360^{\circ}} 2 \ (3,14)$$

$$\beta_{rad} = 0,00112 \ (6,28)$$

$$\beta_{rad} = 0,00703$$

$$Ds_3 = \frac{k \lambda}{\beta cos\theta}$$

$$= \frac{0,98 \times 1,5406 \text{ Å}}{(0,00703)(0,95891)}$$

$$=\frac{1,50978\text{ Å}}{0,00674}$$

$$= 22,40030 \text{ nm}$$

Lampiran 33. Perhitungan Ukuran Diameter Kisi Kristal HAp untuk Waktu Pengadukan 3 Jam dengan Suhu Sinter 900 °C

Dik: k = 0.98

$$\lambda = 1,5406 \text{ Å}$$

1. Peak 1

$$2\theta$$
 (deg) = 28,0383

 $\theta = 14,01915$

 $\cos \theta = 0,97021$

 $2 \pi = 360^{\circ}$

$$\beta_{deg} 2 \pi = 360^{\circ} \beta_{rad}$$

$$\frac{\beta_{deg} 2 \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0,29920}{360^{\circ}} 2 (3,14)$$

$$\beta_{rad} = 0,00083 (6,28)$$

$$\beta_{rad} = 0,00521$$

$$Ds_1 = \frac{k \lambda}{\beta \cos \theta}$$

$$= \frac{0,98 \times 1,5406 \text{ Å}}{(0,00521)(0,97021)}$$

$$= \frac{1,50978 \text{ Å}}{0,00505}$$

$$= 298,96633 \text{ Å}$$

= 29,89663 nm

- 2. Peak 2
 - 2θ (deg) = 25,9806

$\theta = 12,99030$

 $\cos \theta = 0,97440$

FWHM (deg) = 0,24400

 $2 \pi = 360^{\circ}$

$$\beta_{deg} 2 \pi = 360 \circ \beta_{rad}$$

$$\frac{\beta_{\text{deg}} 2 \pi}{360^{\circ}} = \beta_{\text{rad}}$$

$$\beta_{\text{rad}} = \frac{0,24400}{360^{\circ}} 2 (3,14)$$

$$\beta_{\text{rad}} = 0,00067 (6,28)$$

$$\beta_{\text{rad}} = 0,00420$$

$$Ds_2 = \frac{k \lambda}{\beta \cos \theta}$$

$$= \frac{0,98 \times 1,5406 \text{ Å}}{(0,00420)(0,97440)}$$

$$1,50978 \text{ Å}$$

$$=\frac{1,50978 \text{ A}}{0,00409}$$
$$= 369,13936 \text{ Å}$$

3. Peak 3

 2θ (deg) = 31,9876

$\theta = 15,99380$

 $\cos \theta = 0,96129$

FWHM (deg) = 0,26280

 $2 \pi = 360^{\circ}$

$$\beta_{deg} 2 \pi = 360 \circ \beta_{rad}$$

$$\frac{\beta_{deg} \ 2 \ \pi}{360^{\circ}} = \beta_{rad}$$

$$\beta_{rad} = \frac{0,26280}{360^{\circ}} 2 \ (3,14)$$

$$\beta_{rad} = 0,00073 \ (6,28)$$

$$\beta_{rad} = 0,00458$$

$$Ds_3 = \frac{k \ \lambda}{\beta cos\theta}$$

$$= \frac{0,98 \times 1,5406 \ \text{\AA}}{(0,00458) (0,96129)}$$

$$= \frac{1,50978 \ \text{\AA}}{2}$$

Lampiran 34. Hasil XRD HAp untuk Waktu Pengadukan 1 Jam dengan Suhu Sinter 800 °C

	**	* Basic Dat	a Process	* * *				
Gr Da	oup : ta :	Standard bar#flo#1#8	800					
#	Strongest	3 neaks						
п	no. peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
	no.	(deg)	(A)	100	(deg)	(Counts)	(Counts)	
	2 21	31.3338	2.85250	63	0.35380	723	13407	
	3 12	28.1583	3.16654	59	0.38420	681	13509	
#	Peak Data	List	2027					
	peak	2Theta	d (A)	I/I1	FWHM	Intensity	Integrated (Country)	Int
	1	11.1864	7.90337	6	0.32490	(Councs) 71	1279	
	2	13.9387	6.34836	9	0.35450	108	2538	
	3	15.6405	5.66123	4	0.43100	47	1371	
	4	20.5216	4.32439	16	0.34330	50	1620	
	6	22.1625	4.00779	9	0.37500	106	2328	
	7	23.5513	3.77450	5	0.36930	61	1405	
	8	25.3/16	3.50/6/	10	0.35520	117	2339	
	10	26.8800	3.31416	7	0.33340	77	1741	
	11	27.7000	3.21788	4	0.14280	49	556	
	12	28.1583	3.16654	59	0.38420	681	13509	
	13	29.0400	3.07238	5	0.57340	56	2103	
	15	29.9575	2.98034	14	0.34500	164	3727	
	16	31.3338	2.85250	100	0.35380	1150	21749	
	17	32.1000	2.78614	16	0.45340	186	5119	
	19	33.3000	2.68843	12	0.31080	133	2355	
	20	33.8010	2.64971	4	0.30200	48	788	
	21	34.6820	2.58440	63	0.35110	723	13407	
	22	35.4000	2.33361	11	0.32000	129	3246	
	24	37.3200	2.40755	3	0.32000	39	711	
	25	37.6887	2.38484	11	0.39250	121	2061	
	26	38.1400	2.35765	5	0.34400	59	1109	
	28	40.1666	2.24325	14	0.41670	165	3764	
	29	41.3685	2.18081	10	0.40110	112	2406	
	30	42.0391	2.14756	9	0.35170	108	1824	
	31	42.4600	2.08515	6	0.30400	65 45	514	
	33	43.8433	2.06328	10	0.51330	113	2546	
	34	44.3000	2.04306	3	0.32000	40	692	
	35	44.9025	2.01703	11	0.39500	125	2601	
	37	46.3925	1.95566	3	0.21500	35	477	
	38	47.2667	1.92151	26	0.40170	294	7157	
	39	47.8200	1.90056	7	0.00000	77	0	
	40	48.3200	1.868206	13	0.37340	206	4283	
	42	49.8000	1.82954	6	0.38860	64	1124	
	43	50.1200	1.81860	5	0.34000	54	878	
	44	50.6400	1.80114	6	0.3/500	62	1326	
	46	51.7238	1.76592	11	0.42430	123	2620	
	47	53.2945	1.71752	32	0.36910	373	7453	
	48	53.9000	1.69964	9	0.27600	104	1972	
	49	54./586 55.3800	1.65767	3	0.33070	82 37	1433 651	
	51	56.4180	1.62961	4	0.44400	50	1047	
	52	56.9171	1.61650	5	0.29710	59	900	

peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
53	57.7860	1.59425	6	0.50800	70	2066	
54	59.8383	1.54438	14	0.38330	163	3685	
55	60.6020	1.52673	3	0.30800	36	575	
56	61.1166	1.51510	3	0.44670	37	816	
57	61.8728	1.49839	5	0.27150	63	1025	
58	63.6975	1.45979	6	0.26500	70	1217	
59	64.9100	1.43542	3	0.50000	38	1314	
60	65.5530	1.42289	3	0.32600	35	560	
61	66.5273	1.40439	5	0.51870	60	1551	
62	67.7560	1.38189	5	0.44800	58	1184	
63	68.1800	1.37432	3	0.52000	36	896	

< Group: Standard Data: bar#flo#1#800 >

Lampiran 35. Hasil XRD HAp untuk Waktu Pengadukan 1 Jam dengan Suhu Sinter 900 °C

		* * *	Basic Data	Process	* * *				
G: Da	roup ata	:	Standard bar#flo#1#900	D					
#	Strong no. pe 1 1 2 2 3 1	est ak o. 6 1 3	3 peaks 2Theta (deg) 31.6694 35.0171 28.5082	d (A) 2.82303 2.56043 3.12847	I/I1 100 63 55	FWHM (deg) 0.38240 0.39050 0.40580	Intensity (Counts) 480 301 266	Integrated (Counts) 9676 6179 5864	Int
#	Peak D	ata	List		- (
	pee n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(ao123456789012345678901234567890123456789012345678901234567. Ck	2Theta (deg) 11.5700 14.2923 16.0133 17.6714 20.3300 20.8600 22.2000 22.4875 23.8625 25.7240 26.4543 27.1650 28.5082 29.6400 30.3087 31.6694 32.4200 33.0330 33.6600 34.1800 35.0171 35.7600 36.3000 37.5000 38.0460 38.0460 38.0460 39.8206 40.5116 41.7316 42.3450 42.8000 43.6800 44.1600 44.5400 45.2533 45.9458 47.6031 48.6600 49.1800 50.0800 50.04000 51.0900 51.4000 51.4000	d (A) 7.64218 6.19209 5.53027 5.01492 4.25500 4.25500 3.95059 3.72597 3.46041 3.36652 3.28003 3.12847 3.01153 2.94660 2.82303 2.70954 2.62120 2.56043 2.50892 2.47283 2.50892 2.47283 2.50892 2.47283 2.50892 2.47283 2.50892 2.47283 2.50892 2.47283 2.50892 2.47283 2.50892 2.47283 2.50892 2.47283 2.50892 2.47283 2.50892 2.47283 2.50892 2.47283 2.50643 2.50542 2.33643 2.26194 2.62194 2.62210 2.505142 2.03261 2.00221 1.97363 1.90871 1.88794 1.86970 1.885114 1.81996 1.88514 1.89553 1.775533 1.77747 1.69210	I/I1 5 8 3 12 3 3 8 5 8 22 5 5 4 12 100 13 19 10 4 63 7 13 3 12 6 4 16 12 8 4 13 10 3 12 10 13 19 10 4 13 12 10 13 19 10 4 13 12 10 13 19 10 4 13 12 10 13 12 10 13 12 10 13 12 10 13 12 10 13 10 4 13 12 10 13 12 10 13 12 10 13 12 10 13 12 10 13 12 10 13 12 10 13 12 10 13 12 10 13 12 10 4 13 12 10 13 12 10 4 13 12 10 13 12 10 4 13 12 10 13 12 10 4 13 12 13 12 12 13 12 12 13 12 12 13 12 12 13 12 15 13 12 10 13 12 10 4 13 12 13 12 12 13 13 12 12 13 13 12 10 4 13 13 12 12 13 13 12 13 13 13 10 13 13 13 13 13 10 13 13 13 13 13 13 10 13 13 13 13 13 13 13 13 13 13	FWHM (deg) 0.40000 0.31810 0.26670 0.38290 0.22000 0.24000 0.42500 0.44500 0.44500 0.44500 0.44500 0.44530 0.3750 0.37750 0.38240 0.45340 0.45340 0.37750 0.38240 0.45340 0.37750 0.38240 0.45340 0.51400 0.51400 0.36000 0.34000 0.34000 0.34000 0.32530 0.48330 0.35670 0.43300 0.22530 0.48330 0.35670 0.43000 0.24000 0.54000 0.54000 0.54000 0.54000 0.35000 0.41200 0.41200 0.16800 0.25340 0.25340 0.25340 0.25340 0.25340 0.25340 0.25340 0.25340 0.25340	Intensity (Counts) 23 38 16 58 16 15 16 40 26 37 105 24 266 19 59 480 62 92 50 21 301 33 61 16 56 27 17 77 59 56 39 21 60 30 62 46 145 38 111 61 32 35 44 26 69 204 69	Integrated (Counts) 548 784 326 1245 270 253 153 792 652 771 1957 478 5864 610 1115 9676 1577 2118 928 297 6179 512 1618 138 1430 456 210 2027 1183 1430 456 210 2027 1183 1430 456 210 2027 1183 1430 456 210 2027 1183 1430 456 210 2027 1183 1430 456 210 2027 1183 1430 456 210 2027 1183 1430 456 210 2027 1183 1430 456 210 2027 1183 1430 456 210 2027 1183 1430 456 210 2027 1183 1430 456 210 2027 1183 1430 456 210 2027 1183 1430 456 210 2027 1183 1430 456 210 2027 1183 1537 1537 1537 1537 1537 1537 1537 153	Int
	4 4 5 5	8 9 0 1	55.0800 55.7550 56.7266 57.2400	1.66599 1.64741 1.62148 1.60815	9 5 5 7	0.36000 0.19000 0.34670 0.32000	42 23 23 32	811 242 415 502	
	5	2	58.1408	1.58536	9	0.46830	44	972	

peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
53	58.6505	1.57279	4	0.25100	20	275	
54	59.7400	1.54668	4	0.16000	17	259	
55	60.1785	1.53646	21	0.35710	103	1756	
56	60.5200	1.52860	4	0.21340	19	333	
57	60.9000	1.51997	5	0.18000	25	396	
58	61.2000	1.51324	4	0.00000	18	0	
59	61.5050	1.50646	5	0.35000	22	425	
60	62.1930	1.49144	6	0.35400	29	528	
61	64.0083	1.45345	10	0.23940	46	711	
62	65.2950	1.42789	4	0.47000	18	545	
63	65.8966	1.41630	3	0.32670	16	239	
64	66.7200	1.40081	5	0.28000	24	296	
65	66.9412	1.39671	8	0.32250	40	491	
66	68.0800	1.37610	8	0.34400	37	585	
67	68.5200	1.36833	4	0.58000	19	804	

*** Basic Data Process ***

#	Data Infomation		
	Group	:	Standard
	Data	:	bar#flo#1#900
	Sample Nmae	:	serbuk
	Comment	:	
	Date & Time	•	03-07-17 08:03:25
	Duce a line	•	05 07 17 00:05:25
#	Measurement Condition		
-n-	X-ray tube		
	target	•	Cu
	voltago	:	AO O (kW)
	voicage	:	(KV)
	current	•	50.0 (IIIA)
	SIILS Dute Olit		The end
	Auto Siit	•	Used
	divergence slit	:	1.00000 (deg)
	scatter slit	:	1.00000 (deg)
	receiving slit	:	0.30000 (mm)
	Scanning		
	drive axis	:	Theta-2Theta
	scan range	:	10.0000 - 70.0000 (deg)
	scan mode	:	Continuous Scan
	scan speed	:	2.0000 (deg/min)
	sampling pitch	:	0.0200 (deg)
	preset time	:	0.60 (sec)
#	Data Process Condition		
	Smoothing	Γ	AUTO 1
	smoothing points	:	21
	B.G.Subtruction	T	AUTO 1
	sampling points		23
	repeat times		30
	Kal-a2 Separate	· r	MANUAT 1
	Kai-az Separace	L	
	Rai az fatio	•	50 (6)
	Peak Search	L	AUTO J
	differential points	:	21
	FWHM threhold	:	0.050 (deg)
	intensity threhold	:	30 (par mil)
	FWHM ratio (n-1)/n	:	2
	System error Correction	[NO]
	Precise peak Correction	[NO]

< Group: Standard Data: bar#flo#1#900 >

Lampiran 36. Hasil XRD HAp untuk Waktu Pengadukan 2 Jam dengan Suhu Sinter 800 °C

	**	* Basic Data	a Process	* * *				
Gro Dat	bup : ta :	Standard bar#flo#2#80	0					
# 1 1	Strongest no. peak no. 1 17 2 18 3 16	3 peaks 2Theta (deg) 32.0000 32.9600 31.2600	d (A) 2.79461 2.71538 2.85906	I/I1 100 57 52	FWHM (deg) 1.23340 0.79260 0.69260	Intensity (Counts) 655 372 342	Integrated I (Counts) 26416 14347 10851	nt
# 1	Peak Data peak no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	List 2Theta (deg) 11.0700 13.8350 15.5300 17.1510 18.4850 19.7400 20.4000 22.0000 23.0690 25.3600 26.0187 26.8400 28.9200 29.6800 31.2600 32.9600 32.9600 34.4453 35.7325 37.6833 39.9000 41.2400 42.0483 43.9600 44.6000 45.4200 46.8828 48.2357 49.6080 50.6250 51.3800 52.1800 53.2654 56.1233 57.2800 57.9200 59.9400 61.7383	d (A) 7.98621 6.39571 5.70127 5.16590 4.79599 4.49382 4.34989 4.03702 3.80353 3.50925 3.42188 3.31901 3.17298 3.08485 3.00757 2.8597 2.8507 2.38517 2.25762 2.18731 2.14711 2.05807 2.38517 2.25762 2.18731 2.14711 2.05807 2.38517 2.25762 2.18731 2.14711 2.05807 2.38517 2.45762 1.93635 1.88515 1.83617 1.80164 1.77692 1.75155 5.71839 1.63747 1.60712 1.59088 1.54200 1.50133	I/I1 6 5 4 13 3 4 4 9 10 6 42 43 4 9 10 6 42 35 20 57 6 13 57 36 15 3 3 13 6 7 7 28 16 21 10 7 22 3 5 4 8 6 6 7 7 8 6 6 7 8 10 7 8 8 6 7 8 10 7 8 7 8 10 7 8 7 8 10 7 8 7 8 10 7 8 7 8 10 7 8 7 8 10 7 8 7 8 10 7 8 7 8 10 7 8 7 8 10 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	FWHM (deg) 0.48660 0.63000 0.66000 0.64200 1.33000 0.76000 0.76000 0.63000 0.63460 0.63460 0.64660 0.64660 0.64660 0.64660 0.64660 0.6460 0.79260 1.23340 0.79260 0.76400 0.84500 0.84500 0.84500 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.59670 1.02000 0.58660 0.77000 0.77800 0.77000 0.76860 0.77000 0.74600 0.44000 0.47330 0.74660 0.80000 0.80000 0.58330	Intensity (Counts) 39 35 25 83 21 23 23 23 56 66 41 274 29 223 232 132 342 655 372 237 82 31 150 20 83 42 47 43 186 106 172 87 68 47 141 21 31 23 51 37	Integrated I (Counts) 1009 1519 1179 2829 1405 538 859 1805 2602 1787 7907 891 11380 0 9564 10851 26416 14347 9416 3455 1308 6305 817 2434 1791 1204 1239 6736 4520 5245 4017 0 2577 4407 541 1042 923 2293 1191	int
	40 41 42 43	63.1000 64.0975 65.1400 66.4950	1.47091 1.45164 1.43091 1.40500	11 7 3	0.87500 0.64000 0.59000	43 71 44 20	2884 1621 765	

```
*** Basic Data Process ***
# Data Infomation
                                                            : Standard
                    Group
                    Data
                                                            : bar#flo#2#800
                    Sample Nmae
                                                            : serbuk
                    Comment
Date & Time
                                                             :
                                                            : 03-07-17 09:46:21
# Measurement Condition
       X-ray tube
                    target
                                                            : Cu
: 40.0 (kV)
: 30.0 (mA)
                    voltage
                    current
       Slits
                                                           : Used
: 1.00000 (deg)
: 1.00000 (deg)
: 0.30000(mm)
                    Auto Slit
                    divergence slit
scatter slit
receiving slit
       Scanning
drive axis
                                                            : Theta-2Theta
: 10.0000 - 70.0000 (deg)
: Continuous Scan
                   scan range
scan mode
scan speed
sampling pitch
preset time
                                                                       2.0000 (deg/min)
0.0200 (deg)
0.60 (sec)
                                                             :
                                                             :
                                                             :
# Data Process Condition
       Smoothing
smoothing points
B.G.Subtruction
                                                             [ AUTO ]
                                                             : 49
[ AUTO ]
       B.G.Subtruction [AUTO]
sampling points : 51
repeat times : 30
Kal-a2 Separate [MANUAL]
Kal a2 ratio : 50 (%)
Peak Search [AUTO]
differential points : 51
FWHM threhold : 0.050 (deg)
intensity threhold : 30 (par mil)
FWHM ratio (n-1)/n : 2
System error Correction [NO]
Precise peak Correction [NO]
```


Lampiran 37. Hasil XRD HAp untuk Waktu Pengadukan 2 Jam dengan Suhu Sinter 900 °C

	**	*	Basic Data	Process	* * *				
Gr	oup :	S	tandard						
Da	ta :	bi	ar#flo#2#90	0					
# :	Strongest no. peak	3	peaks 2Theta	d	I/I1	FWHM	Intensitv	Integrated In	t
	no.		(deg)	(A)	100	(deg)	(Counts)	(Counts)	
	1 16 2 18		31.6068	2.82848	100	0.3/9/0	697 417	8577	
	3 15		30.8758	2.89376	59	0.32260	413	7076	
# 1	Peak Data	L	ist		T / T 1	DENING	Tabaasibaa	T	
	no.		(deg)	(A)	1/11	(deg)	(Counts)	(Counts)	L
	1		10.8130	8.17544	9	0.31800	65	1100	
	3		16.8525	5.25672	11	0.33200	80	1849	
	4		21.6512	4.10126	9	0.30900	64	1069	
	6		23.1050	3.84639	10	0.38000	70	1324	
	7		24.9800	3.56176	7	0.38000	48	1170	
	8		25.6789	3.46639	47	0.35620	326	6162 846	
	10		27.7379	3.21357	35	0.40700	241	5199	
	11		28.4400	3.13582	25	0.35740	173	2692	
	13		29.4743	3.02809	19	0.32860	135	2470	
	14		30.4000	2.93795	3	0.16000	24	359	
	16		31.6068	2.89376	100	0.32280	697	11862	
	17		31.9800	2.79632	57	0.45000	397	8574	
	18		32.7137	2.73526	23	0.36500	417	3047	
	20		34.2400	2.61674	37	0.32960	255	4100	
	21		35.0800	2.55598	7	0.48000	48	925	
	23		37.2800	2.41004	5	0.48000	36	844	
	24		37.6800	2.38537	3	0.36000	23	370	
	26		39.6175	2.27307	29	0.34320	200	3670	
	27		40.9660	2.20130	4	0.23600	29	346	
	28		41.7293	2.16278	14	0.39860	95 36	2009	
	30		43.6600	2.07151	5	0.44800	34	635	
	31		44.2950	2.04328	8	0.39000	55	1221	
	33		46.5429	1.94969	35	0.37250	247	4697	
	34		46.9400	1.93412	11	0.19600	79	1086	
	36		47.9085	1.89726	22	0.32560	153	2522	
	37		48.3600	1.88059	9	0.28000	62	943	
	38		49.3014	1.84686	37	0.31000	261	2528	
	40		51.1128	1.78558	16	0.31220	112	2108	
	41		51.8900	1.76065	14	0.29000	98 200	1521	
	43		53.4600	1.71259	6	0.34400	45	930	
	44		54.3266	1.68730	6	0.26670	39	783	
	46		56.1533	1.63666	4	0.22670	31	369	
	47		56.9750	1.61500	7	0.36000	49	1042	
	48		57.8300	1.59314	4	0.50000	29	661	
	50		59.5658	1.55079	8	0.64170	57	1749	
	51 52		60.2400 61.4788	1.53503	4 9	0.32000	30 63	646 1185	
	peak		2Theta	d	I/I1	FWHM	Intensity	Integrated In	t
	no. 53		(deg) 62.8400	(A) 1.47763	9	(deg) 0.34660	(Counts)	(Counts)	
	54		63.3600	1.46675	5	0.35000	37	661	
	55		63.8812	1.45603	15	0.44250	102	2333	
	56		66.2183	1.43660	10	0.38330	40	930	
	58		67.4186	1.38798	3	0.29070	22	672	

*** Basic Data Process *** # Data Infomation Group Data : Standard : bar#flo#2#900 Sample Nmae Comment : serbuk Date & Time : 03-07-17 09:12:42 # Measurement Condition X-ray tube target : Cu : 40.0 (kV) : 30.0 (mA) voltage current Slits Auto Slit divergence slit scatter slit receiving slit : Used : 1.00000 (deg) : 1.00000 (deg) : 0.30000(mm) Scanning drive axis scan range scan mode : Theta-2Theta : 10.0000 - 70.0000 (deg) : Continuous Scan : 2.0000 (deg/min) : 0.0200 (deg) : 0.60 (sec) scan speed sampling pitch preset time # Data Process Condition Smoothing smoothing points [AUTO] : 21 [AUTO] B.G.Subtruction sampling points repeat times : 35 : 30 [MANUAL] repeat times : 30 Kal-a2 Separate [MANUAL] Kal a2 ratio : 50 (%) Peak Search [AUTO] differential points : 21 FWHM threhold : 0.050 (deg) intensity threhold : 30 (par mil) FWHM ratio (n-1)/n : 2 System error Correction [NO] Precise peak Correction [NO]

< Group: Standard Data: bar#flo#2#900 >

Lampiran 38. Hasil XRD HAp untuk Waktu Pengadukan 3 Jam dengan Suhu Sinter 800 °C

	***	Basic Data	Process	***			
Group	. : St	tandard					
Data	: ba	ar#flo#3#800	0				
# Str	ongest 3	peaks					
no.	peak	2Theta	d	1/11	FWHM	Intensity	Integrated I
	no.	(deg)	(A)		(deg)	(Counts)	(Counts)
1	15	31.0472	2.87817	100	0.34600	1246	23202
2	21	34.3900	2.60567	64	0.32800	803	14205
3	11	27.8735	3.19825	59	0.41000	738	16887
# Pea	ak Data Li	ist					
	peak	2Theta	d	1/11	FWHM	Intensity	Integrated I
	no.	(deg)	(A)	-	(deg)	(Counts)	(Counts)
	1	10.9605	6 45769	2	0.39100	09	1362
	4	17.0600	5.19325	14	0.38000	169	3600
	4	20.2314	4 38576	3	0.42290	39	1204
	5	21.8769	4.05946	10	0.35890	122	2736
	6	23,2790	3,81803	6	0.45530	78	2366
	7	25,1160	3,54279	9	0.43790	118	2719
	8	25,8367	3,44557	27	0.40110	337	6817
	9	26,5400	3,35584	8	0.55280	94	3003
	10	27.3800	3.25476	4	0.14660	49	566
	11	27.8735	3.19825	59	0.41000	738	16887
	12	28.7200	3.10588	5	0.00000	65	0
	13	29.1400	3.06206	7	0.00000	82	0
	14	29.6773	3.00783	13	0.37460	168	4147
	15	31.0472	2.87817	100	0.34600	1246	23202
	16	31.8000	2.81173	18	0.38280	222	5096
	17	32.4200	2.75936	21	0.41720	264	5885
	18	32.9600	2.71538	13	0.40440	161	3532
	19	33.5200	2.67128	4	0.24000	47	715
	20	33.9600	2.63767	3	0.16660	40	703
	21	34.3900	2.60567	64	0.32800	803	14205
	22	35.1200	2.55316	8	0.29200	104	1695
	23	35.6912	2.51360	12	0.52420	152	4165
	24	37.3887	2.40329	10	0.40250	128	2923
	2.5	30.1600	2.37365	0	0.32580	40	1202
	27	30 9962	2.25030	15	0.45250	100	4053
	29	41 1013	2 19437	12	0.33070	153	3080
	29	41.7750	2.16052	11	0.45000	137	2830
	30	42,2000	2.13974	7	0.27340	90	1385
	31	43.0800	2.09805	5	0.36800	63	1181
	32	43,5000	2.07876	11	0.37340	135	2225
	33	43,9000	2.06074	6	0.38280	78	1684
	34	44.6238	2.02898	10	0.47670	121	2870
	35	45.3312	1.99895	8	0.38250	96	2074
	36	46.9766	1.93270	26	0.35330	324	6393
	37	47.4800	1.91338	6	0.36000	70	1485
	38	48.0200	1.89311	19	0.33000	231	3603
	39	48.3800	1.87986	13	0.38340	164	3446
	40	49.5000	1.83992	7	0.26000	86	1206
	41	49.8200	1.82885	6	0.19000	71	837
	42	50.3800	1.80982	7	0.38660	85	1517
	43	50.7000	1.79915	6	0.29340	77	1121
	44	51.4150	1.77580	11	0.43000	134	3128
	45	53.0178	1.72583	31	0.38150	390	7571
	46	53.5600	1.70963	10	0.41500	126	2911
	47	54.4768	1.68300	7	0.35030	92	1641
	48	56.1325	1.66527	4	0.27600	46	687
eak	2Theta	d	1/11	FWHM	Intens	ity Integr	ated Int
no.	(deg)	(A)	_	(deg)	(Count	ts) (Coun	ts)
50	56.6025	1.62474	5	0.40500		58 11	46
51	57.5117	1.60119	6	0.47000		79 23	37
53	60.3726	1.55103	14	0.36190	1	19 38	13
54	61.5950	1.53198		0.31000		53 10	93
55	63,4266	1.46537	5	0.37330		59 17	80
56	66.2900	1.40885	6	0.34000		71 14	54
57	67.4700	1.38705	5 5	0.34000		57 17	27

	*** Basic Data Proce	153	5 ***
٠	Data Infomation		
	Group	:	Standard
	Data	:	bar#flo#3#800
	Sample Nmae	:	serbuk
	Comment	:	
	Date & Time	:	03-07-17 08:38:14
ŧ	Measurement Condition		
	X-ray tube		
	target	:	Cu
	voltage	:	40.0 (kV)
	current	:	30.0 (mA)
	Slits		
	Auto Slit	:	Used
	divergence slit	:	1.00000 (deg)
	scatter slit	:	1.00000 (deg)
	receiving slit	:	0.30000 (mm)
	Scanning		
	drive axis	:	Theta-2Theta
	scan range	:	10.0000 - 70.0000 (deg)
	scan mode	:	Continuous Scan
	scan speed	:	2.0000 (deg/min)
	sampling pitch	:	0.0200 (deg)
	preset time	:	0.60 (sec)
÷	Data Process Condition		
	Smoothing	E	AUTO]
	smoothing points	:	19
	B.G.Subtruction	E	AUTO]
	sampling points	:	21
	repeat times	:	30
	Kal-a2 Separate	E	MANUAL]
	Kal a2 ratio	:	50 (%)
	Peak Search	1	AUTO]
	differential points	:	19
	FWHM threhold	:	0.050 (deg)
	intensity threhold	:	30 (par mil)
	FWHM ratio (n-1)/n	:	2
	System error Correction	E	NO]
	Precise peak Correction	I	NO]

Lampiran 39. Hasil XRD HAp untuk Waktu Pengadukan 3 Jam dengan Suhu Sinter 900 °C

	**	* Basic Da	ta Process	* * *				
Gr Da	roup : ata :	Standard bar#flo#3#	400					
#	Strongest	3 peaks						
-n	no. peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
	no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
	1 22	31.2204	2.86260	100	0.23350	1833	23332	
	3 15	28.0383	3.17982	56	0.29920	1025	17085	
#	Peak Data	List					10 A	
	peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
	1	(deg) 11.0803	(A) 7,97881	6	(deg) 0.27400	(Counts) 108	(Counts) 1832	
	2	13.8046	6.40973	9	0.28210	160	3123	
	3	15.5144	5.70696	3	0.26890	61	964	
	4	16.9200	5.23590	4	0.17820	77	852	
	5	17.1772	5.15808	15	0.26450	269	3635	
	7	22.0400	4.02979	11	0.22000	200	3342	
	8	23.4306	3.79367	5	0.25510	91	1965	
	9	25.2663	3.52205	10	0.20560	187	2570	
	10	25.6400	3.47156	6	0.22280	106	1499	
	11	25.9806	3.42681	27	0.24400	496	5884	
	13	26.7362	3.33166	8	0.21520	149	1795	
	14	27.6200	3.22702	9	0.11700	165	1523	
	15	28.0383	3.17982	56	0.29920	1025	17085	
	16	28.4600	3.13366	3	0.14000	63	1037	
	18	28.8400	3.09323	4	0.15760	63	1099	
	19	29.5000	3.02551	5	0.32000	85	1652	
	20	29.8578	2.99006	13	0.21890	237	2689	
	21	30.8400	2.89703	13	0.12000	234	3124	
	22	31.2204	2.86260	100	0.23350	1833	23332	
	23	31.5800	2.83082	13	0.18800	239	2933	
	25	32.4000	2.76102	10	0.00000	183	0	
	26	32.6600	2.73963	17	0.22320	310	4763	
	27	33.1714	2.69855	10	0.29710	186	3093	
	28	33.6891	2.65826	4	0.26620	76	1036	
	30	34.5753	2.59213	62	0.23150	1143	15090	
	31	34.9200	2.56733	6	0.14000	110	1289	
	32	35.3000	2.54055	6	0.30860	112	2036	
	33	35.8015	2.50611	11	0.28140	210	2764	
	34	36.0800	2.48/40	6	0.20360	103	1418	
	36	37.5704	2.39208	9	0.35910	167	2993	
	37	38.0180	2.36494	5	0.25600	95	1339	
	38	39.7800	2.26415	4	0.32000	81	2005	
	39	40.0343	2.25036	13	0.28700	234	2965	
	40	40.2600	2.23826	6	0.00000	103	836	
	42	41.0000	2.19955	3	0.19000	59	684	
	43	41.2944	2.18455	11	0.23110	193	2493	
	44	41.8915	2.15478	9	0.26310	168	2695	
	45	42.1600	2.14168	4	0.00000	72	0	
	40	42.4000	2.13011	5	0.19460	80 80	1224	
	48	43.6600	2.07151	9	0.20000	164	2129	
	49	43.8600	2.06253	5	0.00000	95	0	
	50	44.1400	2.05009	5	0.21540	84	1603	
	51	44.7400	2.02398	8	0.24000	153	1677	
	52	44.9000	2.01459	4	0.52000	00	1019	

peak	2Theta	d	I/I1	FWHM	Intensity	Integrated	Int
no.	(deg)	(A)		(deg)	(Counts)	(Counts)	
53	45.4993	1.99196	7	0.29470	120	2109	
54	46.9400	1.93412	11	0.20760	202	2252	
55	47.1546	1.92582	21	0.28920	392	4892	
56	47.7400	1.90356	5	0.23500	98	1610	
57	48.2286	1.88541	16	0.28730	287	4284	
58	48.6000	1.87187	11	0.24640	197	2955	
59	49.6600	1.83436	4	0.26500	80	991	
60	49.9600	1.82405	3	0.40000	60	1195	
61	50.5600	1.80380	5	0.33600	97	1225	
62	50.8000	1.79584	4	0.48500	78	1432	
63	51.5200	1.77242	7	0.27260	126	1545	
64	51.6800	1.76731	8	0.23360	142	1567	
65	52.8000	1.73243	5	0.14180	91	1054	
66	53.1670	1.72133	26	0.27780	474	7596	
67	53.4400	1.71318	9	0.00000	174	0	
68	53.7800	1.70315	8	0.23420	149	3260	
69	54.6282	1.67870	6	0.23240	118	2032	
70	55.3193	1.65935	4	0.17860	69	868	
71	56.3178	1.63227	4	0.27560	74	1206	
72	56.7570	1.62068	3	0.38820	58	1147	
73	57.6900	1.59667	5	0.40660	91	2291	
74	59.4400	1.55377	4	0.15000	69	757	
75	59.7265	1.54700	12	0.27970	228	3734	
76	61.7850	1.50031	4	0.22600	67	1171	
77	63.5842	1.46212	4	0.23650	65	1168	
78	66.4709	1.40545	5	0.29820	86	1762	
79	67.6650	1.38352	4	0.35000	74	2150	

*** Basic Data Process ***

#	Data Infomation		
	Group	:	Standard
	Data	:	bar#flo#3#400
	Sample Nmae	:	serbuk
	Comment	:	
	Date & Time	•	03-06-17 07:52:38
	buoo u rimo		00 00 11 01 02 00
#	Measurement Condition		
	X-rav tube		
	target	:	Сц
	voltage		40.0 (kV)
	current		30.0 (mA)
	Slits	•	50.0 (mm)
	Auto Slit	•	Used
	divergence slit	:	1 00000 (deg)
	cottor clit	:	1.00000 (deg)
	receiving slit	:	1.00000 (deg)
	Seenning Silt	•	0.30000 (IIIII)
	Scalling		mbata Ombata
	drive axis	•	Ineta-Zineta
	scan range	•	10.0000 - 70.0000 (deg)
	scan mode	:	Continuous Scan
	scan speed	:	2.0000 (deg/min)
	sampling pitch	:	0.0200 (deg)
	preset time	:	0.60 (sec)
#	Data Process Condition		
n	Smoothing	Г	
	smoothing points		13
	B C Subtruction	· r	
	B.G.Subtruction		15
	sampling points	:	20
	repeat times	-	SU NANUAT I
	Kal-az Separate	L	MANUAL J
	Kal az ratio	:	50 (%)
	Peak Search	L	AUTO J
	differential points	:	13
	FWHM threhold	:	0.050 (deg)
	intensity threhold	:	30 (par mil)
	FWHM ratio (n-1)/n	:	2
	System error Correction	[NO]
	Precise peak Correction	[NO]

< Group: Standard Data: bar#flo#3#400 >

Lampiran 40. Hasil FTIR HAp untuk Waktu Pengadukan 1 Jam dengan Suhu Sinter 800 °C

Comment; HAP 1 Jam 800 oC Date/Time; 2/22/2017 3:43:19 PM No. of Scans; Resolution; Apodization;

Lampiran 41. Hasil FTIRHAp untuk Waktu Pengadukan 1 Jam dengan Suhu Sinter 900 °C

Comment; HAP 1 Jam 900 oC Date/Time; 2/22/2017 2:47:09 PM No. of Scans; Resolution;

Comment; HAP 2 Jam 800 oC Date/Time; 2/22/2017 3:53:09 PM No. of Scans; Resolution; Apodization;

Comment; HAP 2 Jam 900 oC Date/Time; 2/22/2017 2:33:37 PM No. of Scans; Resolution; Apodization;

Lampiran 44. Hasil FTIRHAp pada Waktu Pengadukan 3 Jam dengan Suhu Sinter 800 °C

Comment; HAP 3 Jam 800 oC Date/Time; 2/22/2017 3:03:29 PM No. of Scans; Resolution; Apodization;

Lampiran 45. Hasil FTIRHAp pada Waktu Pengadukan 3 Jam dengan Suhu Sinter 900 °C

Comment; HAP 3 Jam 900 oC Date/Time; 2/22/2017 2:16:31 PM No. of Scans; Resolution; Apodization; Lampiran 46 Hasil SEM HAp Hasil Sintesis

HA Tescan Vega 3SB / Fisika UNM

Spectrum: test

Element	unn.C norm.C Atom.C Compound norm.				Comp. C Error	(3 Sigma)
	[wt.%]	[wt.%]	[at.%]		[wt.%]	[wt.%]
Sodium	0.35	0.40	0.42	Na20	0.54	0.20
Magnesium	0.30	0.34	0.34	MgO	0.57	0.16
Aluminium	0.07	0.08	0.07	A1203	0.15	0.10
Phosphorus	15.83	18.06	14.06	P205	41.38	1.96
Calcium	35.94	40.99	24.66	CaO	57.36	3.29
Oxygen	35.18	40.12	60.45		0.00	15.43
Total:	 87.67	100.00	100.00			