DAFTAR PUSTAKA

- Andrei, A.B., Elena, G.U., Hassan,Y.A. 2015. X-Ray Diffraction: Instrumentation and Applications. *Critical Reviews in Analytical Chemistry*. Taylor and Francis Group. pp.289-299
- Atmadja, R.S., Golightly, J.P., Wahju, B.N. 1974. *Mafic and Ultrmafic Rock Associations in the East Arc of Sulawesi*. Proceedings ITB. vol. 8, No. 2.
- Bide, T. 2008. Nickel. United Kingdom: British Geologi Survey
- Brouwer, P. 2003. *Theory of XRF*. Almelo: PANalytical.
- Bulatovic, S.M. 2007. *Handbook of Flotation Reagents volume 1*. Amsterdam: Elsevier.p. 443.
- Craigh, J.R and Vaughan. 1981. *Ore Microscopy and Ore Petrography*. USA: John Wiley and Sons
- Dalvi D.A, W. G. B. and Robert C. Osborne. 2004. *The Past and the Future of Nickel Laterites Paper presented at the British Library Conference Proceedings*, Hobart.
- Drzymala, J. 2007. *Mineral processing: Foundations of theory and practice in minerallurgy*. Wroclaw: Wroclaw University of Technology. p. 508.
- Farrokhpay, S. and Filippov, L. 2016. Challenges in processing nickel laterite ores by flotation. Intl. *Journal of Mineral Processing*. vol. 151, pp. 59-67.
- Farrokhpay, S., Fornasiero, D., Fillippov, L. 2018. Upgrading nickel in laterite ores by flotation. *Journal of Mineral Processing*. vol. 121, pp. 100-106.
- Holland, T. J. B. dan Powell, R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. *Metamorphic Geologi*. vol 16, pp. 309–343.
- Isbandi, D.1986. *Mineralogi*. Yogyakarta: Nur Cahaya.
- Karamah, E.F., Bismo, S., Widyaningrum, D. 2008. Pengaruh Waktu Flotasi dan Konsentrasi Logam Awal Terhadap Kinerja Proses Pengolahan Limbah Cair yang Mengandung Logam Besi, Tembaga, dan Nikel dengan Flotasi Ozon. Prosiding Seminar Nasional Rekayasa Kimia Dan Proses 2008. pp. 1411 – 4216.
- Kelly, E.G dan Spottiwood, D.J. 1982. *Introduction to Mineral Processing*: John Wiley & Sons, New York.

- Kowalczuk, P.B., Zawala, J., Kosior, D., Drzymala, J., Malysa, K. 2016b. *Three-phase contact formation and flotation of highly hydrophobic polytetrafluoroethylene in thepresence of increased dose of frothers*. Indust. Eng. Chem. vol 55 (3), pp. 839–843.
- Leng, Y. 2008. *Materials Characterization*. John Wiley & Sons Pty.
- Loye, H. 2013. X-ray Difraction How It Works. Caroline: University of South Carolina.
- Moody, J.B. 1976. Serpentinization: a review. Lithos. vol. 9, pp.125-138.
- Nickel Institute. 2016. The Life of NI. Toronto: Nickel Institute.
- Palabiyik, E.N. 2018. *Pre-concentration of lateritic nickel ore from new caledonia*. Master's thesis. Lulea University Of Technology.
- Palandri, J. L. and Reed, M. H. 2004. *Geochemical Models of Metasomatism in Ultramafic Systems: Serpentinization, Rodingitization, and Sea Floor Carbonate Chimney Precipitation*, Geochimica et Cosmochimica Acta. vol. 68, No 11151133.
- Pramusanto, Saleh, N., Muta'alim, Dahlan, Y., Purwanto, H. 2007. *Application of Reverse Flotation Method for the Upgrading of Iron Oxide Contained in Calcine Laterite Ore*. Bandung:Pusat Pengujian Teknologi Mineral-Tekmira.
- Sufriadin, Idrus, A., Pramumijoyo, S., Warmada, I.W., Nur, I., Suharto. 2009. Serpentinisasi pada Batuan Ultramafik dan Implikasinya Terhadap Eksplorasi Endapan Nikel Laterit.
- Sukandarrumidi. 1999. *Bahan Galian Industri*. Gadjah Mada University Press. Yogyakarta. p.51
- U.S. Geological Survey. 2010. Mineral commodity summaries 2010. U.S. Geological Survey, Nickel. pp. 108–109.
- Waheed, A. 2009. *Nickel Laterites Fundamentals of Chemistry, Mineralogy, Weathering Processes, Formation, and Exploration*. VALE Inco.
- Warren, E. 1969. X-Ray Diffraction, Addittionwesley pub, Messachssets.
- Widyawati. 2012. Prinsip Kerja XRD., <u>http://academiaedu/search/-prinsipkerjax-</u> <u>raydiffraction</u>., diakses pada tanggal 27 April 2020.
- Wills, B.A and Tim Napier-Munn. 2006. An Introduction to The Practical Aspects of Ore Treatment and Mineral Recovery 7th edition: Mineral Processing Technology. Elsevier Science & Technology Books. p.444.
- Zhao, K., Yan, W., Wang, X., Wang, X., Gao, Z., Wang, C. 2020. Effect of a novel phosphate on the flotation of serpentine-containing coppernickel sulfide ore. *Minerals Engineering*. vol. 150, No 106276.

Zhao, L. 2010. Flotation research of three polymorph of serpentine minerals: *Advaced Materials Research*. vol. 158, pp.125-129.

LAMPIRAN

LAMPIRAN A

ANALISIS MIKROSKOPIS

	· · · · · · · · · · · · · · · · · · ·						
Lokasi : Desa Latowu, Kecamatan Batuputih, Kabupaten Kolaka Utara,							
Provinsi S	ulawesi Tenggara.						
Tipe Mineralisasi	: Tersebar						
Mineral Bijih	: Serpentin, magnetit						
Referensi	: Marshall <i>et al.</i> (2004), Kretz (1983)						
Perbesaran	: 5 x						
	Deskripsi Mineralogi Bijih						

Kenampakan mikroskopis memperlihatkan mineral serpentin tersebar pada batuan, mineral magnetit terlihat di sekitar mineral serpentin dan terdapat urat/vein, dimana mineral serpentin menjadi pengisi rekahan urat tersebut dan berasosiasi dengan mineral magnetit

Komposisi Mineral	Keterangan optik mineral
Serpentin	Warna kuning, anhedral-subhedral, isotropic
Magnetit	Warna hitam kecoklatan bentuk <i>euhedral</i> , isotropic,

Lokasi : Desa Latowu, Kecamatan Batuputih, Kabupaten Kolaka Utara, Provinsi Sulawesi Tenggara.						
Tipe Mineralisasi	: Tersebar					
Mineral Bijih	: Serpentin, kromit					
Referensi	: Marshall <i>et al.</i> (2004), Kretz (1983)					
Perbesaran	: 5 x					
	Deskripsi Mineralogi Bijih					
Kenampakan mikrosko	pis memperlihatkan mineral kromit terlihat berbentuk memanjang					
dengan bentuk kristal y	yang tidak jelas berada sekitar mineral serpentin yang terlihat tersebar di					
permukaan sampel.						
Komposisi Mineral	Keterangan optik mineral					
Serpentin Warna kuning, <i>subhedral-anhedral</i> , isotropik.						
Kromit	Narna hitam, bentuk <i>anhedral</i> , isotropik, dengan ukuran 1185,71 μm					

Lokasi : Desa	Latowu, Kecamatan Batuputih, Kabupaten Kolaka Utara,
Provin	si Sulawesi Tenggara.
Tipe Mineralisasi	: Tersebar
Mineral Bijih	: Serpentin, kromit, kuarsa
Referensi	: Marshall <i>et al.</i> (2004), Kretz (1983)
Perbesaran	: 5 x
	Deskripsi Mineralogi Bijih
Kenampakan mikroskoj	pis memperlihatkan urat kuarsa, mineral serpentin terlihat tersebar di
permukaan sampel. Mi	neral kromit terlihat di sekitar mineral serpentin berbentuk pipih
memanjang.	
Komposisi Mineral	Keterangan optik mineral
Serpentin	Warna kuning, <i>subhedral-anhedral</i> , isotropik,
	Warna hitara hantuk an <i>hadral</i> isatranik dangan ukuman 1214.20 um
Kromit	warna nitam, bentuk <i>annedrai</i> , isotropik, dengan ukuran 1214,28 µm
	Warna nutih, auhadral isatronia
Kuarsa	

Lokasi : Desa Latowu, Kecamatan Batuputih, Kabupaten Kolaka Utara, Provinsi Sulawesi Tenggara.						
Tipe Mineralisasi	: Tersebar					
Mineral Bijih	: Serpentin, olivin, magnetit					
Referensi	: Marshall <i>et al.</i> (2004), Kretz (1983)					
Perbesaran	: 5 x					
	Deskripsi Mineralogi Bijih					

Kenampakan mikroskopis memperlihatkan mineral olivin dan serpentin tersebar pada permukaan sampel, mineral magnetit terlihat di sekitar mineral olivin dan serpentin berbentuk persegi dengan batas mineral yang jelas.

Komposisi Mineral	Keterangan optik mineral
Serpentin	Warna kuning, subhedral- anhedral, isotropic
Olivin	Warna coklat keputihan pada nikol sejajar, warna kehijauan pada nikol silang, bentuk <i>subhedral-anhedral</i> , anisotropic
Magnetit	Warna hitam, <i>euhedral</i> , isotropik, dengan ukuran 42,86 – 300 µm

Lokasi : Desa Provin	Latowu, Kecamatan Batuputih, Kabupaten Kolaka Utara, si Sulawesi Tenggara.				
Tipe Mineralisasi	: Tersebar				
Mineral Bijih	: Magnetit, Kuarsa				
Referensi	: Marshall <i>et al.</i> (2004), Kretz (1983)				
Perbesaran	: 5 x				
	Deskripsi Mineralogi Bijih				
Kenampakan mikroskoj	pis memperlihatkan mineral magnetit dan terdapat urat kuarsa pada				
sampel					
Komposisi Mineral	Keterangan optik mineral				
Magnetit	Warna hitam, <i>euhedral</i> , isotropic				
Kuarsa	Warna putih, <i>euhedral,</i> isotropic				

LAMPIRAN B

ANALISIS XRD

No.	2theta [°]	d [Å]	I/I0	FWHM	Matched
1	9,33	9,4713	15,86	0,1408	
2	9,79	9,0273	30,59	0,2724	
3	10,21	8,6569	11,60	0,0851	
4	11,01	8,0296	229,19	0,9275	
5	12,19	7,2548	994,34	0,4265	А
6	14,85	5,9608	27,01	0,0692	
7	19,61	4,5233	109,57	0,8802	
8	21,09	4,2091	57,98	0,2400	D
9	22,07	4,0244	166,94	0,4476	
10	24,49	3,6319	1000,00	0,3942	А
11	26,79	3,3251	63,53	0,3930	D

12	30,35	2,9427	37,90	0,2134	C,E	
13	32,47	2,7552	48,29	0,5727	В	
14	35,99	2,4934	311,88	0,8800	A,C,E	
15	36,63	2,4513	208,47	0,8800	B,D	
16	40,15	2,2441	55,42	0,1558	B,D	
17	40,15	2,2441	55,42	0,1558		
18	42,15	2,1422	76,25	0,8777	A,D	
19	43,37	2,0847	45,29	0,3967	C,E	
20	45,95	1,9735	62,31	0,4107	D	
21	48,47	1,8766	61,09	0,4382	В	
22	50,27	1,8135	59,66	0,4258	A,B,D	
23	52,91	1,7291	53,32	0,4037	В	
24	56,59	1,6251	41,19	0,1003		
25	56,95	1,6156	17,62	0,1394	B,D	
26	60,23	1,5353	213,74	0,6400	A,B	
27	61,83	1,4993	105,44	0,4664	A,B	
28	63,89	1,4559	43,41	0,4235	A,D	
29	66,35	1,4077	32,68	0,0855	C,E	
30	67,71	1,3827	35,96	0,1285	B,D	

Index	Amount (%)	Name	Formula sum	
А	56.8	Lizardite	Fe ₄ SiO ₅ (OH) ₄ .	
В	35.9	Olivine	Mg ₂ SiO ₄	
С	3.6	Magnetite	Fe ₃ O ₄	
D	3.4	Quartz	SiO ₂	
Е	0.3	Chromite	FeCr ₂ O ₄	

LAMPIRAN C

ANALISIS XRF

Ar	alysis type :	Quant analy	/sis	An	alysis date :	2020- 9- 1 0	9:36		
Ar	alysis code :	Nikel Ore 2	019 5						
No.	Sample name	Ni	Со	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	
		mass %	mass %	mass%	mass%	mass%	mass%	mass%	LI2B4O7
1	C-75-10	1.084	0.020	40.103	0.415	7.858	0.207	32.555	20.000
2	C-75-15	1.128	0.017	40.168	0.358	8.176	0.171	32.619	20.000
3	C-75-20	1.226	0.020	39.717	0.259	9.199	0.183	31.847	20.000
4	C-75-25	1.244	0.022	40.427	0.358	9.205	0.176	31.868	20.000
5	C-106-15	1.243	0.016	39.852	0.381	9.003	0.175	32.605	20.000
6	C-150-15	1.210	0.018	38.287	0.515	9.142	0.296	30.549	20.000
7	C-212-5	1.235	0.014	39.340	0.438	9.228	0.213	31.105	20.000
8	T-75-10	0.993	0.016	40.938	0.550	7.808	0.264	32.773	20.000
9	T-75-15	0.998	0.017	40.853	0.499	8.135	0.257	33.039	20.000
10	T-75-20	1.184	0.019	39.568	0.370	9.325	0.262	31.900	20.000
11	T-75-25	1.164	0.019	39.831	0.475	9.385	0.233	32.421	20.000
12	T-106-15	1.162	0.023	41.097	0.514	8.848	0.192	31.993	20.000
13	T-150-15	1.152	0.015	40.565	0.485	8.592	0.188	32.029	20.000
14	T-212-15	1.074	0.017	40,588	0.491	8.147	0.133	32,436	20,000
15	SA	1.212	0.018	39.327	0.400	9.326	0.080	32.374	20.000
	Number	15	15	15	15	15	15	15	15
	Average	1.154	0.018	40.044	0.434	8.759	0.202	32.141	20.000
	Range	0.251	0.009	2.810	0.291	1.577	0.215	2.491	0.000
	RSD(%)	7.23	14.07	1.86	18.34	6.62	27.42	2.02	0.00

LAMPIRAN D

PERHITUNGAN LOI

LOI Table

			sample weight (g):					(No.)
samp No	measurement date	cru.No	cru.Wt (g)	cru+samp	after oven	after burning	samp.Wt	<pre>% wt error</pre>
C-212-15			11.0500	12.0500	12.0200	11.8700	1.0000	
C-150-15			10.7000	11.7000	11.6800	11.5100	1.0000	
C-106-15			11.8900	12.8900	12.8600	12.7200	1.0000	
C-75-15			11.2900	12.2900	12.2700	12.1300	1.0000	
C-75-10			11.2000	12.2000	12.1700	12.0400	1.0000	
C-75-20			10.9400	11.9400	11.9100	11.7700	1.0000	
C-75-25			29.5600	30.5600	30.5400	30.3900	1.0000	
T-212-15			11.0900	12.0900	12.0600	11.9400	1.0000	
T-150-15			10.5700	11.5700	11.5400	11.4200	1.0000	
T-106-15			10.6600	11.6600	11.6300	11.5000	1.0000	
T-75-15			11.1100	12.1100	12.0900	11.9600	1.0000	
T-75-10			10.1700	11.1700	11.1500	11.0200	1.0000	
T-75-20			11.4800	12.4800	12.4500	12.3300	1.0000	
T-75-25			24.9800	25.9800	25.9500	25.8200	1.0000	
SA			26.7400	27.7400	27.6900	27.5600	1.0000	

samp No	measurement date	cru.No	AO samp.Wt	Loss of water in AO	AB samp.Wt	Loss of water in AB	H2O-(%)	H2O+(%)
C-212-15			0.9700	0.0300	0.8200	0.1800	3.0000	15.0000
C-150-15			0.9800	0.0200	0.8100	0.1900	2.0000	17.0000
C-106-15			0.9700	0.0300	0.8300	0.1700	3.0000	14.0000
C-75-15			0.9800	0.0300	0.8400	0.1600	2.0000	13.0000
C-75-10			0.9700	0.0200	0.8400	0.1600	3.0000	14.0000
C-75-20			0.9700	0.0300	0.8300	0.1700	3.0000	14.0000
C-75-25			0.9800	0.0200	0.8300	0.1700	2.0000	15.0000
T-212-15			0.9700	0.0300	0.8500	0.1500	3.0000	12.0000
T-150-15			0.9700	0.0300	0.8500	0.1500	3.0000	12.0000
T-106-15			0.9700	0.0300	0.8400	0.1600	3.0000	13.0000
T-75-15			0.9800	0.0200	0.8500	0.1500	2.0000	13.0000
T-75-10			0.9800	0.0200	0.8500	0.1500	2.0000	13.0000
T-75-20			0.9700	0.0300	0.8500	0.1500	3.0000	12.0000
T-75-25			0.9700	0.0300	0.8400	0.1600	3.0000	13.0000
SA			0.9500	0.0500	0.8200	0.1800	5.0000	13.0000

LAMPIRAN E

PERHITUNGAN RECOVERY

- 1. Recovery berdasarkan variabel fraksi ukuran butir
 - a. Recovery Ni

Recovery Ni C-212-15 =
$$\frac{C.c}{F.f} \times 100\%$$

= $\frac{26,5 \times 1,312}{200 \times 1,318} \times 100\%$
= 13,19 %

Recovery Ni C-150-15 =
$$\frac{C.c}{F.f} \times 100\%$$

= $\frac{36.4 \times 1.255}{200 \times 1.318} \times 100\%$
= 17,33%

Recovery Ni C-106-15 =
$$\frac{C.c}{F.f} \times 100\%$$

= $\frac{52,5 \times 1,336}{200 \times 1,318} \times 100\%$
= 26,61%

Recovery Ni C-75-15 =
$$\frac{C.c}{F.f} \times 100\%$$

= $\frac{98.6 \times 1.226}{200 \times 1.318} \times 100\%$
= 45,88%

b. Recovery Fe₂O₃

Recovery Fe₂O₃ C-212-15 =
$$\frac{C.c}{F.f} x 100\%$$

= $\frac{26,5 x9,804}{200 x 10,142} x 100\%$
= 12,80%
Recovery Fe₂O₃ C-150-15 = $\frac{C.c}{F.f} x 100\%$
= $\frac{36,4 x9,484}{200 x 10,142} x 100\%$
= 17,02%

Recovery Fe₂O₃ C-106-15 =
$$\frac{C.c}{F.f} x 100\%$$

= $\frac{52,5 x9,678}{200 x 10,142} x 100\%$
= 25,04%
Recovery Fe₂O₃ C-75-15 = $\frac{C.c}{F.f} x 100\%$
= $\frac{98,6 x8,891}{200 x 10,142} x 100\%$
= 43,22%

- 2. Recovery berdasarkan variabel waktu flotasi
 - a. Recovery Ni

Recovery Ni C-75-10 =
$$\frac{C.c}{F.f} \times 100\%$$

= $\frac{79,3 \times 1,178}{200 \times 1,318} 100\%$
= 35,46%

Recovery Ni C-75-15 =
$$\frac{C.c}{F.f} \times 100\%$$

= $\frac{98.6 \times 1.226}{200 \times 1.318} \times 100\%$
= 45,88%

Recovery Ni C-75-20 =
$$\frac{C.c}{F.f} \times 100\%$$

= $\frac{95,1 \times 1,317}{200 \times 1,318} \times 100\%$
= 47,54%

Recovery Ni C-75-25 =
$$\frac{C.c}{F.f} \times 100\%$$

= $\frac{81,5 \times 1,321}{200 \times 1,318} \times 100\%$

b. Recovery Fe₂O₃

Recovery Fe₂O₃C-75-10 = $\frac{C.c}{F.f} x 100\%$ = $\frac{79,3 x7,858}{200 x 10,142} x 100\%$ = 33,40%

Recovery Fe₂O₃ C-75-15 =
$$\frac{C.c}{F.f} \times 100\%$$

= $\frac{98.6 \times 8.891}{200 \times 10,142} \times 100\%$
= 43,22%

Recovery Fe₂O₃ C-75-20 =
$$\frac{C.c}{F.f} \times 100\%$$

= $\frac{95,1 \times 9,888}{200 \times 10,142} \times 100\%$
= 46,36%

Recovery Fe₂O₃C-75-25 =
$$\frac{C.c}{F.f} \times 100\%$$

= $\frac{81,5 \times 9,780}{200 \times 10,142} \times 100\%$
= 39,29%