DAFTAR PUSTAKA

- Bakosurtanal., 2013. "Peta Rupa bumi Lembar TANETIE nomor 2110-41", Cibinong, Bogor.
- Bemmelen, V. R. W., 1949. "The Geology of Indonesia Vol. IA General Geology of Indonesia and Adjacent Archipelagoes", Government Printing, The Hague.
- Bronto, Sutikno. 2013 Geologi Gunung Api Purba. Badan Geologi, Bandung
- Doddy, S.G., 1987. "Batuan dan Mineral", Nova, Bandung.
- Frost, B. R., dan Frost, C. D., 2008. "A Geochemical Classification For Feldspathic Igneous Rocks", Department Of Geology And Geophysics, University Of Wyoming, Laramie, USA.
- Hutchinson C. S., 1973. **"Tetonic Evolution of Sundaland"**. Aphanerozonic Synthesis, Geol Soc. Malaysia Bulletin
- Keer, P. F., 1958, "Optical Mineralogy", Mc Graw Hill Book Co.Inc., New York.
- Mackenzie, W. S., dan Guildford, C., 1980. "Atlas of Rock-Forming Minerals in Thin Section", Longman Group Ltd, England.
- Masrukan., Rosika., Anggraini, D., dan Kisworo, J., 2007 "Komparasi Analisis Komposisi Paduan AlMgSI1 dengan Menggunakan Teknik X-Ray Fluorocency (XRF) dan Emission Spectrometry", Pusat Teknologi Bahan Bakar Nuklir, Batan, Yogyakarta.
- Mulyono., Sukadi., Sihono., Rosidi., dan Irianto, Bambang., 2012. **"Kalibrasi Tenaga dan Standar Menggunakan Alat X-Ray Fluoresence (XRF) untuk Analisis Zirkonium dalam Mineral"**, Penelitian dan Pengelolahan Perangkat Nuklir, Yogyakarta.
- Pearce, T. H., Gorman, B. E. & Brikett, T.c., 1977. "The Relationship Between Major Element Geochemistry and Tectonic Eviroment of Basic and Intermediate Volcanic Rock". Earth and Planetary Science Letters.
- Peccerillo, A. dan S.R Taylor. 1976. "Geochemistrry of Eocene Calc-Alkaline Volcanic Rock From The Kastamonu Area, Northen Turkey, Canberra". Contributions Mineralogy and Petrology by Spinger-Verlag
- Rollinson, H. R., 1993. "Using Geochemical Data: Evaluation, Presentation, Interpretation", J. Wiley & Sons Inc., New York, USA.
- Sampotan, F. A., 2012, "Struktur Geologi Sulawesi" Perpustakaan Sains Kebumian Institut Teknologi Bandung, Bandung.

- Sukamto, R., 1975. "Perkembangan Tektonik Sulawesi dan Sekitarnya yang Merupakan Sintesis yang Berdasarkan Tektonik Lempeng", Pusat Penelitian dan Pengembangan Geologi Direktorat Pertambangan Umum Departemen Pertambangan dan Energi, Bandung, Indonesia.
- Sukamto, R., Simandjuntak., 1983, **"Hubungan Tektonik Ketiga Mandala** Geologi Sulawesi yang Ditinjau dari Aspek Sedimentologinya". Pusat Penelitian dan Pengembangan Geologi Direktorat Pertambangan Umum Departemen Pertambangan dan Energi, Bandung, Indonesia.
- Surono., Sukamto, R., Ratman, N., Priadi, B., Permana, H., Sardjono., Sidarto., dan Bachri, S., 2013. "Geologi Sulawesi", LIPI Press, Bandung.
- Thornbury, W. D., 1969. "Principles of Geomorphology, Second edition", John Willey & Sons, Inc, New York, USA.
- Travis, R. B., "Classification of Rock", Colorado School of Mines, Fourth Edition
- Wilson, M., 1989. "Igneous Petrogenesis A Global Tectonic Approach", Department of Earth Sciences, University of Leeds, The Netherlands.
- Winter, 2001. "Introduction Igneous and Metamorphic Petrology", Phil, Trans, Roy, Soc, London, Prentice Hall.

L A Μ P Ι R A Ν

No Stasiun : ST. 2 Lokasi : Air Terjun Simoko		Satuan : Basalt Nama Batuan : <i>Porfiri Basalt</i>	
Foto Foto Plg Plg Plg Plg Plg Plg Plg Plg		Image: With the second sec	
Tipe Batuan : Batuan Beku			
Tipe Struktur : Masif			
Klasifikasi : Travis, 1995			
Warna interferensi abu-abu hingga cokelat Warna adsorbsi tidak berwarna, kristalinitas hipokrostalin, granularitas porfiroafanitik, bentuk mineral subhedral – anhedral, fabrik inequigranular, komposisi mineral berupa Piroksen, Plagioklas dan massadasar mikrolin plagioklas. Ukuran mineral 0,02 – 5 mm			
Iumlah			
Komposisi Mineral	Juman (%)	Keterangan Optic mineral	
Piroksen	35	Warna absorbsi <i>colourless</i> , warna interferensi kecoklatan. Bentuk anhedral-euhedral. Memiliki relief tingi, pleokrisme monokroik, intensitas tinggi, belahan dua arah, kembaran tidak ada, pecahan tidak ada, ukuran 0,175 mm, sudut gelapan 37 ⁰ , jenis gelapan Miring	
Plagioklas	15	Warna absorbsi tidak berwarna atau transparan/ <i>colourless</i> , warna interferensi abu abu. Bentuk anhedral - subhedral. Memiliki relief sedang, pleokrisme monokroik, intensitas rendah, belahan satu arah, kembaran albit, pecahan tidak rata, ukuran 0,075-5 mm, sudut gelapan 41 ^o , jenis gelapan Miring	
Massa dasar 60		Warna absorbsi <i>colourless</i> , warna interferensi putih keabu abuan. Bentuk subhedral. Memiliki relief rendah, pleokrisme monokroik, intensitas lemah, belahan satu arah, ukuran < 0,02 mm , jenis gelapan Miring	
Nama Batuan :	Porfiri Basalı	t (Travis, 1955)	

No Stasiun : ST. 3		Satuan : Tufa	
Lokasi : Air Terjun Simoko		Nama Batuan : vitric tuff	
Foto			
Lensa Okuler : 10x		Lensa Obyektif : 5x Perbesaran Total :50x	
Tipe Batuan : Batuan Beku			
Tipe Struktur : -			
Klasifikasi : Schmid, 1981			
Mikroskopis : Warna adsorbsi <i>colourless</i> , Warna interferensi abu-abu hingga Kehitaman, bentuk material subrounded – rounded, komposisi material berupa Kuarsa, biotit dan gelas vulkanik. Ukuran 0,02 – 0,175 mm			
Deskripsi Mineralogi			
Komposisi Mineral	Jumlah (%)	Keterangan Optic mineral	
Kuarsa 30		Warna absorpsi <i>colourless</i> , warna interferensi putih keabu-abuan, bentuk subhedral-euhedral, relief rendah, intensitas tinggi, belahan tidak ada, pecahan tidak rata, ukuran mineral $0,02 - 0,175$ mm, sudut gelapan 7°, jenis gelapan bergelombang	
Biotit	Biotit15Warna absorbsi kuning kecoklatan, warna interferensi coklat bentuk anhedral, relief sedang, intensitas sedang, pleokro monokroik, ukuran mineral 0,06 mm - 0,10 mm, pecahan tidak jenis gelapan paralel sebesar 90°		
Gelas vulkanik	55	Warna Absorbsi <i>Colourless</i> , Warna Interferensi abu-abu ke cokelatan. Ukuran material <0,02 mm.	
Nama Batuan :	Vitric Tufft (S	Schmid,1981)	

Match! Phase Analysis Report

Sample: Basalt (5-70)

Sample Data

File name File path Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed Radiation Wavelength Basalt.RAW O:/Data XRD-Pak Agus-juli2020/Basalt Jun 17, 2020 13:47:51 5.000° - 70.000° 5.000° - 70.000° 3251 0.020 No No No Yes X-rays 1.540600 Å

Matched Phases

Index	Amount (%)	Name	Formula sum
А	43.3	Andesine	Al0.735 Ca0.24 Na0.26 O4 Si1.265
В	30.4	Calcium magnesium catena-silicate Diopside	Ca Mg O6 Si2
С	25.7	Quartz	O2 Si
D	0.5	Magnetite	Fe3 O4
	4.3	Unidentified peak area	

A: Andesine (43.3 %)*

Formula sum	Al0.735 Ca0.24 Na0.26 O4 Si1.265
Entry number	96-900-1031
Figure-of-Merit (FoM)	0.676928*
Total number of peaks	251
Peaks in range	251
Peaks matched	139
Intensity scale factor	0.21*
Space group	C -1
Crystal system	triclinic (anorthic)
Unit cell	a= 8.1790 Å b= 12.8800 Å c= 7.1120 Å α= 93.440° β= 116.210 ° γ= 90.230 °
I/Ic	0.72
Calc. density	2.673 g/cm ³
Reference	FitzGerald J. D., Parise J. B., Mackinnon I. D. R., "Average structure of an An48 plagioclase from the Hogarth
	RangesSample: Neutron data", American Mineralogist 71, 1399-1408 (1986)

B: Calcium magnesium catena-

silicate Diopside (30.4 %)* Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

Ca Mg O6 Si2 96-101-1048 0.828261^{*} 226 86 52 0.28^{*} C 1 2/c 1 monoclinic a = 9.7100 Å b= 8.8900 Å c= 5.2400 Å β = 74.170 ° 1.35 3.305 g/cm³ Warren B E, Biscoe J, "The Crystal Structure of monoclinic pyroxenes", Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik,Kristallchemie (-144,1977) **80**, 391-401 (1931)

C: Quartz (25.7 %) [*]	
Formula sum	O2 Si
Entry number	96-900-0780
Figure-of-Merit (FoM)	0.809269*
Total number of peaks	32
Peaks in range	14
Peaks matched	11
Intensity scale factor	0.55*
Space group	P 32 2 1 S
Crystal system	trigonal (hexagonal axes)
Unit cell	a= 4.7220 Å c= 5.2670 Å
l/lc	3.17
Calc. density	2.943 g/cm ³
Reference	Levien L., Prewitt C. T., Weidner D. J., "Structure and elastic properties of quartz at pressureP = 55.8 kbar", American Mineralogist 65 , 920-930 (1980)

D: Magnetite (0.5 %)	
Formula sum	Fe3 O4
Entry number	96-900-2329
Figure-of-Merit (FoM)	0.641401*
Total number of peaks	34
Peaks in range	9
Peaks matched	5
Intensity scale factor	0.02*
Space group	F d -3 m
Crystal system	cubic
Unit cell	a= 8.1710 Å
l/lc	6.02
Calc. density	5.638 g/cm ³
Reference	Haavik C., Stolen S., Fjellvag H., Hanfland M., Hausermann D., "Equation of state of magnetite and its high- pressure modification:Thermodynamics of the Fe-O system at high pressureSample at P = 21.8 GPa", American Mineralogist 85 , 514-523 (2000)

(*) 2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active search-match option 'Automatic zero point adaption'.

Candidates

Name Formula Entry No. FoM Sn 96-154-0070 0.7687 Dilithium Oxide Li2 O 96-151-4098 0.7611 Antimony Sb 96-901-3012 0.7579 Antimony Sb 96-901-3014 0.7579 Ce2.76923 Ge4.30769 Ce3 Ge5 96-152-4792 0.7523 Titanium oxide (Anatase) O2 Ti 96-101-0943 0.7478 Lithium perchlorate CI Li O4 96-431-3931 0.7449 96-152-9649 Sr Ni0.5 Si1.5 Ni0.5 Si1.5 Sr 0.7408 Ge Se 96-152-8769 0.7402 Nb Ru 96-153-8201 0.7381 Gallium arsenate(V) As Ga O4 96-100-9007 0.7377 Rb Al O2 AI O2 Rb 96-154-1491 0.7371 96-210-6114 0.7368 Hg In 02 V Y Wakefieldite-(Y) 96-901-6009 0.7366 Cerium 96-900-8492 0.7361 Ce Ga0.2 Si0.8 V3 (Ga0.2 Si0.8) V3 96-152-2787 0.7354 Gallium arsenate(V) As Ga O4 96-100-9006 0.7350 Gallium arsenate(V) As Ga O4 96-100-9009 0.7350 As Eu O4 96-591-0277 0.7325 0.7306 Indium Vanadate In O4 V 96-433-6637 Gallium arsenate(V) As Ga O4 96-100-9008 0.7296 Y Zn 96-154-1129 0.7295 Na3 Nd14 O36 Ru6 96-430-7163 0.7294 DI 96-403-0190 0.7290 Srilankite O2 Ti0.666 Zr0.334 96-901-0855 0.7287 96-153-8608 Ni1.29 Ti3 N1.29 Ti3 0.7285 Li1.08 N H1.92 H1.92 Li1.08 N 96-412-4007 0.7283 Tb Zn 96-154-1250 0.7275 Ce Li Sn2 96-152-5060 0.7269 H Li2 N 96-154-1618 0.7260 Li2 (N H) Ti0.85Sn0.15O2 O2 Sn0.15 Ti0.85 96-154-4414 0.7253 96-901-1640 Helium He 0.7252 Ge Se 96-900-8784 0.7247 Cu Ga Te2 96-154-2205 0.7239 Neon Ne 96-901-1722 0.7238 Fe O4 P 96-151-8116 0.7236 Cs2 O4 S 96-591-0153 0.7231 Rh2 Sn V 96-152-2975 0.7227 Gallium arsenate(V) As Ga O4 96-100-9005 0.7217 O2 Zr 96-900-9052 0.7213 Si I4 l4 Si 96-152-5682 0.7212 K H3 (Se O3)2 H3 K O6 Se2 96-153-0008 0 7211 Fe (P O4) Fe O4 P 96-153-2907 0.7211 16 Na2 O18 Ti 96-410-4386 0.7211 Cd3 Sc2 (Ge O4)3 Cd3 Ge3 O12 Sc2 96-153-0427 0.7207 Li N D2 96-153-5839 D2 Li N 0.7198 D3 K O6 Se2 K D3 (Se O3)2 96-152-7725 0.7197 Barium strontium lutetium oxide (2/1/22/36) Ba2 Lu22 O36 Sr 96-200-2350 0.7193 Ag3 Yb5 96-151-0044 0.7190 Be H4 O4 P2 beryllium bis(hypophosphite) 96-201-4099 0.7185 Potassium Κ 96-901-1988 0.7184 Iron Fluoride F3 Fe 96-210-0657 0.7177 and 3088 others ...

Search-Match

Reference database used	С
Automatic zeropoint adaptation	Y
Minimum figure-of-merit (FoM)	0
2theta window for peak corr.	0
Minimum rel. int. for peak corr.	1
Parameter/influence 2theta	0
Parameter/influence intensities	0
Parameter multiple/single phase(s)	0

COD-Inorg REV248644 2020.03.03 Yes 0.60 0.30 deg. 1 0.50 0.50 0.50

Criteria for entries added by user

Reference:

Entry number:

96-100-1772;96-155-7001;96-155-7002;96-200-7565;96-900-0426;96-900-0434;96-900-0769;96-900-1784;96-900-1785;96-900-1894;96-900-1895;96-900-1896;96-900-1897;96-900-1898;96-900-1899;96-900-1900;96-900-1901;96-900-2004;96-900-2005;96-900-2006;96-900-2007;96-900-2008;96-900-2009;96-900-2010;96-900-2011;96-900-2564;96-900-2565;96-900-2566;96-900-2567;96-900-2568;96-900-3089;96-900-3090;96-900-3091;96-900-3092;96-900-3093;96-210-8238;96-210-8239;96-210-8242;96-210-8243;96-210-8244;96-901-1201;96-901-1202;96-900-1031;96-900-1032

Peak List

No.	2theta [°]	d [Å]	1/10	FWHM	Matched
1	13.72	6.4491	60.78	0.7887	A,B
2	16.34	5.4204	52.83	1.6042	_
3	19.82	4.4759	72.48	0.5622	В
4	20.62	4.3040	41.80	0.8714	2
5	21.48	4.1336	105.53	0.5310	C
6	21.96	4.0443	1/9.1/	0.4998	A
1	23.00	3.8637	89.72	1.4196	A
ð	23.70	3.7512	278.17	0.3941	A
10	24.50	3.6304	152.75	0.5869	A,B
10	25.00	3.3300	179.55	0.7790	^
12	20.92	3.4347	109.00	0.7790	
12	21.14	2 0029	391.05	0.3170	
1/	29.02	2.9950	311 76	0.3031	
15	30.00	2.9417	253.88	0.4920	
16	31.96	2 7980	170.97	0.4920	Δ
17	33.06	2 7074	36.68	0.0042	Δ
18	33.00	2 6392	30.50	0.4056	Δ
19	35.52	2 5253	496 71	0.4000	AB
20	36.46	2 4623	120.37	0.2338	A D
21	37.18	2 4163	37.83	0 2219	A
22	37.74	2.3817	37.12	0.4013	A.B
23	38.14	2.3577	39.19	0.9461	A.C.D
24	39.24	2.2941	41.53	1.6301	A.B
25	39.96	2.2544	59.42	1.6301	Á
26	40.68	2.2161	40.58	1.6301	A,B,C
27	42.02	2.1485	89.15	1.2682	A,B,C
28	42.50	2.1253	108.02	0.9976	Á,B
29	42.96	2.1036	73.55	0.9976	A,B
30	44.72	2.0248	84.45	0.6315	A,B
31	45.98	1.9722	20.65	0.1974	A,B
32	46.78	1.9404	37.47	0.4176	A,B
33	48.44	1.8777	35.19	0.2717	A,B,D
34	49.78	1.8302	68.56	0.3179	A,B
35	50.26	1.8139	28.24	0.3179	A,B
36	50.74	1.7978	50.22	0.7453	A,B
37	51.14	1.7847	65.98	0.8325	A
38	52.24	1.7497	70.49	0.3648	A,B,C
39	53.04	1.7252	34.76	0.4618	A
40	53.52	1.7108	41.40	0.3546	A,B
41	54.06	1.6950	28.76	0.1396	A
42	55.02	1.6677	46.19	0.3577	A,B,D
43	56.04	1.6397	41.78	1.0034	A
44	50.00	1.0248	80.13	1.0080	A,B
40 46	57.10	1.0102	40.00	1.9050	
40 17	09.22 60.49	1.0090	47.00	0.43/0	
47 18	61 52	1.5295	47.90 33.07	1 4006	
<u>40</u>	62.24	1 4004	96.30	1.4030	ΔR
50	62 70	1 4806	180.93	0.5185	ARC
51	65.80	1 4181	90.60	0 4489	A B
52	66.44	1.4060	90.72	0.3768	A,B.C
-					, , -

Profile area	Counts	Amount
Overall diffraction profile	1769776	100.00%
Background radiation	1544270	87.26%
Diffraction peaks	225506	12.74%
Peak area belonging to selected phases	150244	8.49%
Peak area of phase A (Andesine)	66198	3.74%
Peak area of phase B (Calcium magnesium catena-silicate Diopside)	47319	2.67%
Peak area of phase C (Quartz)	35176	1.99%
Peak area of phase D (Magnetite)	1552	0.09%
Unidentified peak area	75262	4.25%

Peak Residuals

Peak data	Counts	Amount
Overall peak intensity	6431	100.00%
Peak intensity belonging to selected phases	4898	76.17%
Unidentified peak intensity	1532	23.83%

Diffraction Pattern Graphics

Match! Copyright © 2003-2020 CRYSTAL IMPACT, Bonn, Germany

Match! Phase Analysis Report

Sample: Tufa (5-70)

Sample Data

File name File path Data collected Data range Original data range Number of points Step size Rietveld refinement converged Alpha2 subtracted Background subtr. Data smoothed Radiation Wavelength Tufa.RAW O:/Data XRD-Pak Agus-juli2020/Tufa Jun 17, 2020 13:47:51 5.000° - 70.000° 5.000° - 70.000° 3251 0.020 No No No Yes X-rays 1.540600 Å

Matched Phases

Index A B C D E	Amount (%) 47.1 24.0 19.8 5.7 3.5 3.1	<i>Name</i> Quartz Feldspar Diopside Titanium oxide Anatase iron oxide <i>Unidentified peak area</i>	<i>Formula sum</i> O2 Si Al1.74 Na0.03 O8 Si2.26 Sr0.84 Al0.078 Ca Fe0.024 Mg0.976 O6 Si1.922 Ti O2 Fe3 O4
<i>A: Quart</i> Formula Entry nu Figure-of Total nur Peaks in Peaks m Intensity Space gi Crystal s Unit cell I/Ic Calc. dei Reference	tz (47.1 %)* sum mber f-Merit (FoM) nber of peaks range atched scale factor roup ystem	O2 Si 96-901-1496 0.748843 [*] 32 15 10 0.81 [*] P 31 2 1 S trigonal (hexagonal axes) a= 4.6764 Å c= 5.2475 Å 3.12 3.012 g/cm ³ Glinnemann J., King H. E., Schu temperature quartz-type phases Kristallographie 198 , 177-212 (1	ulz H., Hahn T., La Placa S. J., Dacol F., "Crystal structures of the low- s of SiO2 and GeO2at elevated pressure P = 7.2GPa = 72 kbar", Zeitschrift fur 1992)
<i>B: Felds</i> Formula Entry nur Figure-of Total nur Peaks in Peaks m Intensity Space gu Crystal s Unit cell I/Ic Calc deu	spar (24.0 %)* sum mber f-Merit (FoM) nber of peaks range atched scale factor roup ystem	Al1.74 Na0.03 O8 Si2.26 Sr0.84 96-900-0426 0.563428 [*] 294 164 91 0.15 [*] C 1 2/m 1 monoclinic a= 8.3282 Å b= 12.9801 Å c= 7 1.10 2 986 g/cm ³	4 .1358 Å β= 115.599 °

*C: Diopside (19.8 %)** Formula sum Entry number Figure-of-Merit (FoM) Total number of peaks Peaks in range Peaks matched Intensity scale factor Space group Crystal system Unit cell I/Ic Calc. density Reference

Reference

American Mineralogist **59**, 1319-1326 (1974) Al0.078 Ca Fe0.024 Mg0.976 O6 Si1.922 96-900-4318 0.708846^{*} 231 91 50 0.14^{*} C 1 2/c 1 monoclinic a= 9.7485 Å b= 8.9179 Å c= 5.2566 Å β = 105.894 ° 1.29 3.283 g/cm³ Liang J., Hawthorne F. C., "Characterization of fine-grained mixtures of rock-forming minerals byRietveld

Grundy H. D., Ito J., "The refinement of the crystal structure of a synthetic non-stoichiometric Srfeldspar",

structure refinement: olivine + pyroxene Sample: P5 - 49.9% olivineRietveld", The Canadian Mineralogist **32**, 541-552 (1994)

D: Titanium oxide Anatase (5.7 %)*

Formula sum	Ti O2
Entry number	96-500-0224
Figure-of-Merit (FoM)	0.708582*
Total number of peaks	23
Peaks in range	10
Peaks matched	4
Intensity scale factor	0.17*
Space group	l 41/a m d
Crystal system	tetragonal
Unit cell	a= 3.7892 Å c= 9.5370 Å
I/Ic	5.34
Calc. density	3.874 g/cm ³
Reference	Horn M, Schwerdtfeger C F, Meagher E P, Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik,Kristallchemie (-144,1977) 136 , 273-281 (1972)

E: iron oxide (3.5 %)*

· · · ·
Formula sum
Entry number
Figure-of-Merit (FoM)
Total number of peaks
Peaks in range
Peaks matched
Intensity scale factor
Space group
Crystal system
Unit cell
l/lc
Calc. density
Reference

0.12^{*} F d -3 m cubic a= 8.3985 Å

5.34
3.874 g/cm³
Horn M, Schwerdtfeger C F, Meagher E P, Zeitschrift fuer Kristallographie, Kristallgeometrie, Kristallphysik,Kristallchemie (-144,1977) 136, 273-281 (1972)
Fe3 O4
96-151-3305
0.760740^{*}
35
11
9

6.28
5.192 g/cm³
Ferreira Fabio Furlan, Granado Eduardo, Carvalho Jr Wilson, Kycia Stefan W., Bruno Daniele, Droppa Jr Roosevelt, "X-ray powder diffraction beamline at D10B of LNLS: application to theBa2FeReO6double perovskite", Journal of Synchrotron Radiation 13(1), 46-53 (2005)

^(*)2theta values have been shifted internally for the calculation of the amounts, the intensity scaling factors as well as the figure-of-merit (FoM), due to the active search-match option 'Automatic zero point adaption'.

Candidates

Name	Formula	Entry No.	FoM
	Ce2 Fe O2 Se2	96-710-5871	0.7653
Lithium dihydrogenarsenate	As H2 Li O4	96-100-8336	0.7646
Pr2 Cu O4	Cu O4 Pr2	96-152-2179	0.7645
Tsaregorodtsevite	C8 AI N O12 Si5	96-900-9561	0.7644
Pr2CuO4 T-prime phase (Pr2CuO4)	Cu O4 Pr2	96-155-2369	0.7625
	C4 B Cl2 F4 N2 S4	96-411-6446	0.7582
Zinc perchlorate hexahydrate	Cl2 H12 O14 Zn	96-210-1879	0.7573
Pr2 Cu O4	Cu O4 Pr2	96-153-9849	0.7533
Selenium(II) dicyanide	C2 N2 Se	96-430-6093	0.7515
Eu W O1.58 N1.42	Eu N1.42 O1.58 W	96-152-8787	0.7494
	Li2 Pt	96-153-8006	0.7460
Ti F3	F3 Ti	96-154-0116	0.7445
Scandium	Sc	96-901-1595	0.7421
	Al0.5 La2 Li0.5 O4	96-150-0044	0.7419
Calcium diniobium tetraphosphate diphosphate oxide	Ca Nb2 O21 P6	96-100-8338	0.7406
	C6 Br2 N4 O4 S	96-155-4036	0.7398
Magnesium borohydride	B2 H8 Kr0.557 Mg	96-451-7378	0.7398
Tridymite	O2 Si	96-901-3394	0.7394
Na8 (Al6 Ge6 O24) 12	Al6 Ge6 I2 Na8 O24	96-202-0242	0.7393
	Mn5 O24 S6 Sr	96-150-8819	0.7375
(Y0.7 Yb0.3)	Y0.7 Yb0.3	96-152-8153	0.7371
Pb Tl4 Te3	Pb Te3 Tl4	96-153-9244	0.7341
aluminum phosphate	AI O4 P	96-201-0796	0.7333
	Al6 Br1.74 Cl0.26 Na8 O24 Si6	96-403-0255	0.7310
Khademite	AI F H10 O9 S	96-900-9710	0.7308
Tristrontium cyclo-hexaaluminate	Al6 O18 Sr9	96-100-8451	0.7305
	Al2 O6 Sr3	96-901-5879	0.7305
Sr ((Fe0.5 Ta0.5) O3)	Fe0.5 O3 Sr Ta0.5	96-154-2000	0.7295
	Al2 O6 Sr3	96-200-0992	0.7290
	Br In3 La5	96-810-0738	0.7286
K In (W O4)2	In K O8 W2	96-152-4300	0.7285
Cesium cvanomanganate	C6 Cs2 Mn2 N6	96-431-4776	0.7282
Magnesite	C Cd0.4 Mg0.6 O3	96-901-0225	0.7270
0	Al6 Br2 Na8 O24 Si6	96-403-0256	0.7269
Si O2	O2 Si	96-412-4084	0.7267
Se O F2	F2 O Se	96-403-1234	0.7266
Bi TI9 Te6	Bi Te6 TI9	96-810-4111	0.7266
	Ge3 N4	96-153-2512	0.7245

Sodium silver bromide tecto-alumosilicate (7.8	8/.2/1.9/6)Ag0.24 Al6 Br1.88 Na7.76 O24 S	si696-411-9062	0.7245
La5 Sn3 I	I La5 Sn3	96-153-2440	0.7231
Cerium silver silicon (1/0.67/1.33)	Ag0.67 Ce Si1.33	96-150-9018	0.7230
La Ba2 Cu2 Ta O8	Ba2 Cu2 La O8 Ta	96-153-8939	0.7226
	Ba4 Ge25 Na2	96-810-0978	0.7225
S (C N)2	C2 N2 S	96-231-0376	0.7222
	Al6 Br0.98 Cl1.02 Na8 O24 Si6	96-403-0254	0.7219
	Al6 Ca4 O16 S	96-451-1961	0.7217
(Ba0.829 Sr0.171) (Ti0.89 Ce0.11) O3	Ba0.829 Ce0.11 O3 Sr0.171 Ti0.	8996-152-2089	0.7216
Sr3 (Ga2 O6)	Ga2 O6 Sr3	96-152-6518	0.7214
	Al6 Br0.57 Cl1.43 Na8 O24 Si6	96-403-0253	0.7193
Sr (Sn0.5 Fe0.5) O3	Fe0.5 O3 Sn0.5 Sr	96-153-3398	0.7192
Sr Cr Sn (P O4)3	Cr O12 P3 Sn Sr	96-153-2810	0.7191
	Ba3.97 Fe3 K1.03 O9	96-432-6535	0.7191
and 2594 others			

Search-Match

Settings Reference database used COD-Inorg REV248644 2020.03.03 Automatic zeropoint adaptation Yes Minimum figure-of-merit (FoM) 0.60 2theta window for peak corr. 0.30 deg. Minimum rel. int. for peak corr. 1 Parameter/influence 2theta 0.50 Parameter/influence intensities 0.50 Parameter multiple/single phase(s) 0.50

Criteria for entries added by user

Reference:

Entry number:

96-100-1772;96-155-7001;96-155-7002;96-200-7565;96-900-0426;96-900-0434;96-900-0769;96-900-1784;96-900-1785;96-900-1894;96-900-1895;96-900-1896;96-900-1897;96-900-1898;96-900-1899;96-900-1900;96-900-1901;96-900-2004;96-900-2005;96-900-2006;96-900-2007;96-900-2008;96-900-2009;96-900-2010;96-900-2011;96-900-2564;96-900-2565;96-900-2566;96-900-2567;96-900-2568;96-900-3089;96-900-3090;96-900-3091;96-900-3092;96-900-3093;96-101-1033;96-101-1085;96-722-8111;96-900-0927;96-900-0928;96-900-0929;96-900-0930;96-900-0931;96-900-0932;96-900-0933;96-900-0934;96-900-0935;96-900-2317;96-900-2318;96-900-2319;96-900-2320;96-900-2321;96-900-2322;96-900-2323;96-900-2324;96-900-2325;96-900-2326;96-900-2327;96-900-2328;96-900-2329;96-900-2330;96-900-2331;96-900-2332;96-900-2333;96-900-2674;96-900-2675;96-900-4088;96-900-4156;96-900-4157;96-900-5813;96-900-5814;96-900-5815;96-900-5816;96-900-5817;96-900-5837;96-900-5838;96-900-5839;96-900-5840;96-900-5841;96-900-5842;96-900-5843;96-900-6185;96-900-6190;96-900-6195;96-900-6200;96-900-6243;96-900-6248;96-900-6253;96-900-6266;96-900-6921;96-900-6922;96-900-7645;96-900-7707;96-900-7708;96-900-9769;96-900-9770;96-901-0940;96-901-0941;96-901-0942;96-901-3530;96-901-3531;96-901-3532;96-901-3533;96-901-3534;96-901-3535;96-901-3536

Peak List

No.	2theta [°]	d [Å]	I/IO	FWHM	Matched
1	13.72	6.4491	53.30	0.4296	B,C
2	19.90	4.4580	53.53	0.5343	С
3	20.62	4.3040	33.49	0.5343	
4	21.48	4.1336	108.58	1.6799	В
5	21.96	4.0443	160.83	1.6799	A
6	22.92	3.8770	85.38	1.6799	В
7	23.70	3.7512	348.69	0.3338	В
8	24.50	3.6304	131.16	1.2778	С
9	24.98	3.5618	206.55	1.2778	B,D
10	25.76	3.4557	80.20	1.2778	В
11	26.80	3.3239	54.65	1.2778	С
12	27.74	3.2133	1000.00	0.4921	A,B,C
13	28.46	3.1337	79.68	0.4921	
14	29.90	2.9859	224.84	0.5302	B,C,E
15	30.36	2.9417	202.37	0.5302	С
16	30.84	2.8970	98.06	0.5302	B,C
17	31.56	2.8326	63.78	1.5046	С
18	31.96	2.7980	86.78	1.5046	
19	32.34	2.7660	41.90	1.5046	В
20	33.06	2.7074	22.26	1.5046	В
21	33.86	2.6452	6.14	1.5046	
22	35.36	2.5364	244.67	0.6923	B,C,E
23	36.54	2.4571	39.09	0.6923	В
24	37.26	2.4113	34.73	0.6923	B,E
25	37.90	2.3720	43.31	0.6923	C,D
26	39.24	2.2941	31.42	0.4637	B,C
27	40.52	2.2245	17.12	0.3779	B,C
28	42.10	2.1446	104.52	0.6633	A,B,C
29	42.96	2.1036	53.57	0.6703	B,C,E
30	44.56	2.0317	36.21	0.6007	A,B,C

31	45.58	1.9886	25.19	0.5741	
32	46.94	1.9341	28.38	0.4266	B,E
33	48.52	1.8748	35.09	0.3382	В
34	49.24	1.8490	19.89	0.3382	B,C
35	49.70	1.8330	88.52	0.2849	B,C
36	50.82	1.7952	68.04	0.6486	B,C
37	52.32	1.7472	88.68	0.3091	A,B,C
38	53.28	1.7180	34.49	0.4783	B,C,E
39	54.86	1.6721	12.05	0.4200	C,D
40	55.74	1.6478	25.31	0.3618	В
41	56.68	1.6227	87.52	0.3887	B,C
42	57.16	1.6102	47.53	0.4983	A,B,C,E
43	60.72	1.5240	24.87	0.3492	A,B,C
44	62.32	1.4887	126.49	0.6331	B,C,D,E
45	64.38	1.4460	10.89	0.8542	B,C
46	65.88	1.4166	40.16	0.6188	B,C,E
47	66.52	1.4045	19.86	1.7736	A,B,C
48	69.44	1.3524	23.32	0.4413	В

Integrated Profile Areas

Based on calculated profile

Profile area	Counts	Amount
Overall diffraction profile	1641389	100.00%
Background radiation	1423163	86.70%
Diffraction peaks	218227	13.30%
Peak area belonging to selected phases	167449	10.20%
Peak area of phase A (Quartz)	55674	3.39%
Peak area of phase B (Feldspar)	58492	3.56%
Peak area of phase C (Diopside)	31072	1.89%
Peak area of phase D (Titanium oxide Anatase)	10968	0.67%
Peak area of phase E (iron oxide)	11243	0.68%
Unidentified peak area	50778	3.09%

Peak Residuals

Peak data	Counts	Amount
Overall peak intensity	7948	100.00%
Peak intensity belonging to selected phases	6320	79.52%
Unidentified peak intensity	1628	20.48%

Diffraction Pattern Graphics

Match! Copyright © 2003-2020 CRYSTAL IMPACT, Bonn, Germany

Sample	:	BASALT	
Operator	:	SUFRIADIN	
Comment	:	Quick&easy	Air-Metal
Group	:	easy-oxide	
Date	:	2020-06-17	11:54:22

Quantitative Result

Analyte	Result	[3-sigma] ProcCalc. Line	Int.(cps/uA)
Si02 Al203 Fe203 Ca0 K20 Ti02 Ba0 Sr0 Mn0 Cr203 Zr02 Cu0 Y203 Nb0	44.420 % 35.600 % 8.110 % 7.472 % 2.786 % 0.982 % 0.222 % 0.177 % 0.128 % 0.042 % 0.041 % 0.041 % 0.011 % 0.005 %	[0.645] Quan-FP SiKa [1.507] Quan-FP AlKa [0.031] Quan-FP FeKa [0.039] Quan-FP FeKa [0.027] Quan-FP CaKa [0.019] Quan-FP K Ka [0.019] Quan-FP BaLa [0.049] Quan-FP BaLa [0.002] Quan-FP SrKa [0.005] Quan-FP MnKa [0.005] Quan-FP CrKa [0.002] Quan-FP CrKa [0.002] Quan-FP CrKa [0.002] Quan-FP CrKa [0.001] Quan-FP Y Ka [0.001] Quan-FP NbKa	0.9901 0.0818 162.3996 7.5582 1.9823 4.8938 0.5503 17.1576 2.0983 0.4738 4.1332 0.3173 0.4953 0.5956

Sample	:	TUFA	
Operator	:	SUFRIADIN	
Comment	:	Quick&easy	Air-Metal
Group	:	easy-oxide	
Date	:	2020-06-17	12:38:23

Quantitative Result

Analyte	Result	[3-sigma] H	ProcCalc. I	ine Int.(cps/uA)
Analyte Si02 Al203 Ca0 Fe203 K20 Ti02 Ba0	46.530 % 38.579 % 5.864 % 5.410 % 2.082 % 0.796 % 0.209 %	[0.589] ([1.421] ([0.031] ([0.022] ([0.021] ([0.015] ([0.040] (Quan-FP Si Quan-FP Al Quan-FP Ca Quan-FP Fe Quan-FP K Quan-FP Ti Ouan-FP Ba	Ka 1.1295 Ka 0.1009 Ka 6.5615 Ka 127.0928 Ka 1.6032 Ka 4.4975 aLa 0.5866
P205 Sr0 Mn0 Zr02 Ag20 Cr203 Cu0 Pd0	0.197 % 0.153 % 0.091 % 0.038 % 0.018 % 0.017 % 0.010 % 0.006 %	[0.131] ([0.001] ([0.004] ([0.001] ([0.002] ([0.002] ([0.002] ([0.002] (Quan-FP P Quan-FP Sr Quan-FP Mr Quan-FP Zr Quan-FP Ac Quan-FP Cr Quan-FP Cr Quan-FP Cu	Ka 0.0087 Ka 18.7838 hKa 1.7350 Ka 4.8018 JKa 1.2444 Ka 0.2190 iKa 0.3723 iKa 0.3813

