DAFTAR PUSTAKA

- Abbad, M. M., Takriff, M. S., & Mohammad, A. W. 2015. Enhancement of 2-chlorophenol photocatalytic degradation in the presence Co²⁺ doped ZnO nanoparticles under direct solar radiation. *Research on Chemical Intermediates*, **42**(6),1-18.
- Abbasi, S., Hasanpour, M., Ahmadpoor, F., Sillanpaa, M., Dastan, D., & Achour, A. 2019. Application of the statistical analysis methodology for photodegradation of methyl orange using a new nanocomposite containing modified TiO₂ semiconductor with SnO₂. *International Journal of Environmental Analytical Chemistry*, **101**(2),1-17.
- Abdullah, H., Khan, M., Ong, H., & Yaakob, Z. 2017. Modified TiO₂ photocatalyst for CO₂ photocatalytic reduction : An overview. *Journal of CO₂ Utilization*, **22**, 15-32.
- Abdullah, M., Khairurrijal, Nurhasanah, I., Sriyanti, I., & Marully, A. R. 2009. Nanopartikel Ceria yang Didop Neodimium untuk Aplikasi Solid Oxide Fuel Cell (SOFC). Jurnal Nanosains & Nanoteknologi, 2(1), 21-26.
- Aberoumand, A. 2011. A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. *Journal* of Dairy & Food Sciences, 6(1), 71-78.
- Aboud, N. A. A., Alkayat, W. M. S., & Hussain, D. H. 2020. Simple chemical synthesis of zinc oxide and copper oxide nanoparticles for biological protection. Systematic Reviews in Pharmacy, **11**(6), 1188-1195.
- Akpan, U. G., & Hameed, B. H. 2010. The advancements in sol-gel method of doped-TiO₂ photocatalysts. *Applied Catalysis A: General*, **375**(1), 1-11.
- Akrami, A., & Niazi, A. 2016. Synthesis of maghemite nanoparticles and its application for removal of Titan yellow from aqueous solutions using full factorial design. *Desalination and Water Treatment*, **57**(47),1-14.
- Ali, T., Ahmed, A., Alam, U., Uddin, I., Tripathi, P., & Muneer, M. 2018. Enhanced photocatalytic and antibacterial activities of Ag-doped TiO₂ nanoparticles under visible light. *Materials Chemistry and Physics*, **212**, 325-335.
- Alsharaeh, E. H., Bora, T., Soliman, A., Ahmed, F., Bharath, G., Ghoniem, M. G., Salah, K. M., & Dutta, J. 2017. Sol-gel-assisted microwavederived synthesis of anatase Ag/TiO₂/Go nanohybrids toward efficient visible light phenol degradation. *Catalysts*, **7**(5), 1-10.

André, R. S., Zamperini, C. A., Mima, E. G., Longo, V. M., Albuquerque, A.

R., Sambrano, J. R., Machado, A. L., Vergani, C. E., Hernandes, A. C., Varela, J. A., & Longo, E. 2015. Antimicrobial activity of TiO₂:Ag nanocrystalline heterostructures: Experimental and theoretical insights. *Chemical Physics*, **459**, 87-95.

- Ansari, S. A., Ansari, S. G., Foaud, H., & Cho, M. H. 2017. Facile and sustainable synthesis of carbon-doped ZnO nanostructures towards the superior visible light photocatalytic performance. *New Journal of Chemistry*, **41**(17),1-23.
- Anwar, B. 2016. Biodegradasi Poli (Hidroksibutirat Co Caprolakton) dengan Menggunakan Lumpur Aktif. *Jurnal Pengajaran MIPA*, **12**(2), 68-78.
- Aritonang, A. B., Krisnandi, Y. K., & Gunlazuardi, J. 2018. Modification of TiO₂ nanotube arrays with N doping and Ag decorating for enhanced visible light photoelectrocatalytic degradation of methylene blue. International Journal on Advanced Science, Engineering and Information Technology, 8(1), 234-241.
- Avci, N., Smet, Æ. P. F., Poelman, Æ. H., Driessche, I. Van, & Poelman, Æ. D. 2009. Characterization of TiO₂ powders and thin films prepared by non-aqueous sol-gel techniques. *Journal Sol-Gel Sci Technol*, **52**(3), 424-431.
- Ayed, L., Chaieb, Æ. K., & Cheref, Æ. A. 2009. Biodegradation of triphenylmethane dye Malachite Green by Sphingomonas paucimobilis. World Journal of Microbiology and Biotechnology, 25(4), 705-711.
- Azad, K., & Gajanan, P. 2017. Photodegradation of Methyl Orange in Aqueous Solution by the Visible Light Active Co:La:TiO₂ Nanocomposite. *Chemical Sciences Journal*, **8**(3), 1-9.
- Azazy, M., Dimassi, S. N., El-shafie, A. S., & Issa, A. A. 2019. Applied sciences Bio-Waste Aloe vera Leaves as an Efficient Adsorbent for Titan Yellow from Wastewater : Structuring of a Novel Adsorbent Using Plackett-Burman Factorial Design. *Applied Sciences*, 9(22),1-20.
- Azmi, W., Sani, R. K., & Banerjee, U. C. 1998. Biodegradation of triphenylmethane dyes. *Enzyme and Microbial Technology*, **22**(3), 185-191.
- Baban, A., Yediler, A., Lienert, D., Kemerdere, N., & Kettrup, A. 2003. Ozonation of high strength segregated effluents from a woollen textile dyeing and finishing plant. *Dyes and Pigments*, **58**(2), 93-98.
- Bai, Z., & Zhang, Y. (2016). Self-powered UV-visible photodetectors based on ZnO/Cu₂O nanowire/electrolyte heterojunctions. *Journal of Alloys and Compounds*, **675**, 325-330.

Barakat, M. A., & Kumar, R. 2016. Photocatalytic Activity Enhancement of

Titanium Dioxide Nanoparticles. 1-29.

- Baylor, S. ., & Hollingworth, C. 1990. Absorbance Signals from Resting Frog Skeletal Muscle Fibers Injected with the pH Indicator Dye, Phenol Red. *Journal Of General Physiology*, **96**(3), 449-471.
- Benkhaya, S., Harfi, S. El, & Harfi, A. El. 2017. Classifications, properties and applications of textile dyes: A review. *Applied Journal of Environmental Engineering Science*, **3**(3), 311-320.
- Bharat, T. C., Shubham, Mondal, S., Gupta, H. S., kumarvidya, P. K., & Das,
 A. K. 2019. Synthesis of doped zinc oxide nanoparticles: A review.
 Materials Today: Proceedings, 11, 767-775.
- Bharti, D. B., & Bharati, A. V. 2016. Synthesis of ZnO nanoparticles using a hydrothermal method and a study its optical activity. *Luminescence*, 32(3),1-4.
- Bhermana, B. G., Safni, & Syukri. 2015. Degradasi zat warna Metanil Yellow secara fotolisis dan penyinaran matahari dengan penambahan katalis TiO₂ Anatase dan SnO₂. *Journal of Islamic Science and Technology*, 1(1), 49-62.
- Bonanni, A. 2007. Ferromagnetic nitride-based semiconductors doped with transition metals and rare earths. *Semiconductor Science and Technology*, **22**(9), 41-56.
- Byrne, C., Moran, L., Hermosilla, D., Merayo, N., Blanco, A., Rhatigan, S., Hinder, S., Ganguly, P., Nolan, M., & Pillai, S. C. 2019. Effect of Cu doping on the anatase-to-rutile phase transition in TiO₂ photocatalysts: Theory and experiments. *Applied Catalysis B: Environmental*, **246**, 266-276.
- Cahino, A. M., Loureiro, R. G., Dantas, J., Madeira, V. S., & Ribeiro Fernandes, P. C. 2019. Characterization and Evaluation of ZnO/CuO Catalyst in the Degradation of Methylene Blue Using Solar Radiation. *Ceramics International*, **45**(11), 13628-13636.
- Carp, O., Huisman, C. L., & Reller, A. 2004. Photoinduced reactivity of titanium dioxide. *Progres in Solid State Chemistry*, **32**(3), 33-177.
- Chandekar, Shkir, M., Al-Shehri, B. M., AlFaify, S., Halor, R. G., Khan, A., Al-Namshah, K. S., & Hamdy, M. S. 2020. Visible light sensitive Cu doped ZnO: Facile synthesis, characterization and high photocatalytic response. *Materials Characterization*, **165**, 1-11.
- Chaudhary, B. 2020. Chemistry of synthetic dyes: A Review. *Journal of Interdisciplinary Cycle Research*, **7**(11), 390-396.
- Cheng, Q., Benipal, M., Liu, Q., Wang, X., Crozier, P., Chan, C., & Nemanich, R. 2017. Al₂O₃ and SiO₂ Atomic Layer Deposition Layers

on ZnO Photoanodes and Degradation Mechanisms. ACS Applied Materials & Interfaces, **9**(19), 1-7.

- Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. 2010. Recent developments in photocatalytic water treatment technology: A review. *Water Research*, **44**(10), 2997-3027.
- Coleman, H. M., Vimonses, V., Leslie, G., & Amal, R. 2007. Degradation of 1,4-dioxane in water using TiO₂ based photocatalytic and H₂O₂/UV processes. *Journal of Hazardous Materials*, **146**(3), 496-501.
- Colon, G., Maicu, M., Hidalgo, M. C., & Navı, J. A. 2006. Cu-doped TiO₂ systems with improved photocatalytic activity. *Applied Catalysis*, **67**, 41-51.
- Daghrir, R., Drogui, P., & Robert, D. 2013. Modified TiO₂ for environmental photocatalytic applications: A review. *Industrial and Engineering Chemistry Research*, **52**(10), 3581-3599.
- Dewi, T., Mahdi;, & Novriyansyah, T. 2016. Pengaruh Rasio Reaktan Pada Impregnasi Dan Suhu Reduksi Terhadap Karakter Katalis Kobalt/Zeolit Alam Aktif. *Jurnal Teknik Kimia*, **22**(3), 34-42.
- Ebrahimi, R., Hossienzadeh, K., Maleki, A., Ghanbari, R., Rezaee, R., & Safari, M. 2019. Effects of doping zinc oxide nanoparticles with transition metals (Ag, Cu, Mn) on photocatalytic degradation of Direct Blue 15 dye under UV and visible light irradiation. *Journal of Environmental Health Science and Engineering*, **17**(1), 1-14.
- Elkamel, I., Hamdaoui, N., Mezni, A., Ajjel, R., & Beji, L. 2019. Synthesis and characterization of Cu doped ZnO nanoparticles for stable and fast response UV photodetector at low noise current. *Journal of Materials Science: Materials in Electronics*, **30**(10), 1-11.
- Eyison, A. A., Tetteh, S., & Zugle, R. 2020. Frontiers in Chemical Research Photocatalytic degradation of azo reactive dyes with ultraviolet and sunlight. *Frontiers in Chemical Research*, **2**(1), 26-32.
- Farhan, S., Sharafee, M., Ismail, S., Bonilla-petriciolet, A., Ben, A., & Erto, A. 2018. Synthesis and characterization of a novel amphoteric adsorbent coating for anionic and cationic dyes adsorption: Experimental investigation and statistical physics modelling. *Chemical Engineering Journal*, **351**, 221-229.
- Fenoll, J., Ruiz, E., Hellín, P., Flores, P., & Navarro, S. 2011. Chemosphere Heterogeneous photocatalytic oxidation of cyprodinil and fludioxonil in leaching water under solar irradiation. *Chemosphere*, **85**(8), 1262-1268.
- Forgacs, E., Cserháti, T., & Oros, G. 2004. Removal of synthetic dyes from wastewaters: A review. *Environment International*, **30**(7), 953-971.

- Gaya, U. I., & Abdullah, A. H. 2008. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. *Journal of Photochemistry and Photobiology C: Photochemistry Reviews*, 9(1), 1-12.
- Gratzel, M. 2003. Dye-sensitized solar cells. *Journal of Photochemistry and Photobiology C: Photochemistry Reviews*, **4**(2), 145-153.
- Gupta, K., Singh, R. P., Pandey, A., & Pandey, A. 2013. Photocatalytic antibacterial performance of TiO₂ and Ag-doped TiO₂ against S. Aureus. P. Aeruginosa and E. Coli. *Beilstein Journal of Nanotechnology*, 4(1), 345-351.
- Gupta, S. M., & Tripathi, M. 2011. A review of TiO₂ nanoparticles. *Chinese Science Bulletin*, **56**(16), 1639-1657.
- Gupta, V. K., Mittal, A., Kurup, L., & Mittal, J. 2006. Adsorption of a hazardous dye, erythrosine, over hen feathers. *Journal of Colloid and Interface Science*, **304**(1), 52-57.
- Harisha, S., Keshavayya, J., Kumara Swamy, B. E., & Viswanath, C. C. 2017. Synthesis, characterization and electrochemical studies of azo dyes derived from barbituric acid. *Dyes and Pigments*, **136**, 1-46.
- Hassaan, M. A., & Nemr, A. El. 2017. Health and Environmental Impacts of Dyes: Mini Review. American Journal of Environmental Science and Engineering, 1(3), 64-67.
- Hikmawati, Watoni, A. H., Wibowo, D., Maulidiyah, & Nurdin, M. 2017. Synthesis of Nano-Ilmenite (FeTiO₃) doped TiO₂/Ti Electrode for Photoelectrocatalytic System. *IOP Conference Series: Materials Science and Engineering*, **267**(1), 1-9.
- Hiremath, S., Antony Raj, M. A. L., Chandra Prabha, M. N., & Vidya, C. 2018. Tamarindus indica mediated biosynthesis of nano TiO₂ and its application in photocatalytic degradation of Titan yellow. *Journal of Environmental Chemical Engineering*, 6(6), 1-30.
- Hsu, M. H., & Chang, C. J. 2014. Ag-doped ZnO nanorods coated metal wire meshes as hierarchical photocatalysts with high visible-light driven photoactivity and photostability. *Journal of Hazardous Materials*, **278**, 444-453.
- Ismael, M. 2020. A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO₂ nanoparticles. *Solar Energy*, **211**, 522-546.
- Janaki, A. C., Sailatha, E., & Gunasekaran, S. 2015. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. *Spectrochimica Acta Part, A: Molecular and Biomolecular Spectroscopy*,**144**, 17-22.

- Janczyk, A., Krakowska, E., Stochel, G., & Macyk, W. 2006. Singlet oxygen photogeneration at surface modified titanium dioxide. *Journal of the American Chemical Society*, **128**(49), 15574-15575.
- Jayabharathi, J., Karunakaran, C., Kalaiarasi, V., & Ramanathan, P. 2014. Nano ZnO, Cu-doped ZnO, and Ag-doped ZnO assisted generation of light from imidazole. *Journal of Photochemistry and Photobiology A: Chemistry*, **295**, 1-10.
- Kacus, H., Sahin, Y., Aydogan, S., Incekara, U., & Yilmaz, M. 2020. Phenol red based hybrid photodiode for optical detector applications. *Solid State Electronics*, **171**, 1-7.
- Kant, R. 2012. Textile dyeing industry an environmental hazard. *Natural Science*, **4**(1), 22-26.
- Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z., Bhatti, H. N., & Nouren, S. 2018. Dyes adsorption using clay and modified clay: A review. *Journal of Molecular Liquids*, **256**,1-48.
- Koohestani, H., & Ezoji, R. 2021. Synthesis and Characterization of TiO₂/CuO/WO₃ Ternary Composite and its Application as Photocatalyst. *International Journal of Engineering*, **34**(3), 721-727.
- Kormann, C., Bahnemann, D. W., & Hoffmann, M. R. 1988. Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO₂, ZnO, and desert sand. *Environmental Science and Technology*, 22(7), 798-806.
- Kumar, A., & Pandey, G. 2017. A review on the factors affecting the photocatalytic degradation of hazardous materials. *Material Science & Engineering International Journal*, **1**(3), 106-114.
- Kumar, H., & Rani, R. 2013. Structural and Optical Characterization of ZnO Nanoparticles Synthesized by Microemulsion Route. International Letters of Chemistry, Physics and Astronomy, 14, 26-36.
- Kumar, R., & Gnanavel, B. 2017. High performance catalytic activity of pure and silver (Ag) doped TiO₂ nanoparticles by a novel microwave irradiation technique. *Journal of Materials Science: Materials in Electronics*, **28**(5), 1-7.
- Kumaresan, S., Vallalperuman, K., Sathishkumar, S., Karthik, M., & SivaKarthik, P. 2017. Synthesis and systematic investigations of AI and Cu-doped ZnO nanoparticles and its structural, optical and photocatalytic properties. *Journal of Materials Science: Materials in Electronics*, 28(3), 1-8.
- Kuriakose, S., Satpati, B., & Mohapatra, S. 2015. Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. *Physical Chemistry Chemical Physics*, **17**(38),1-23.

- Labhane, P. K., Huse, V. R., Patle, L. B., Chaudhari, A. L., & Sonawane, G. H. 2015. Synthesis of Cu Doped ZnO Nanoparticles: Crystallographic, Optical, FTIR, Morphological and Photocatalytic Study. *Journal of Materials Science and Chemical Engineering*, **3**(7), 39-51.
- Lam, S. M., Sin, J. C., Abdullah, A. Z., & Mohamed, A. R. 2012. Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: A review. *Desalination and Water Treatment*, **41**(3), 131-169.
- Lee, K., Akmal Saipolbahri, Z., Hoe Guan, B., & Soleimani, H. 2014. Organic sol-gel method in the synthesis and characterization of zinc oxide nanoparticles. *American Journal of Applied Sciences*, **11**(6), 959-962.
- Lei, X. F., Xue, X. X., & Yang, H. 2014. Preparation and characterization of Ag-doped TiO₂ nanomaterials and their photocatalytic reduction of Cr(VI) under visible light. *Applied Surface Science*, **321**, 396-403.
- Linsebigler, A. L., Lu, G., & Yates, J. T. 1995. Photocatalysis on TiO₂ Surfaces: Principles, Mechanisms, and Selected Results. *Chemical Reviews*, **95**(3), 735-758.
- Listiorini, Fahyuan, H. D., & Ngatijo. 2018. Pengaruh Doping Al Terhadap Band Gap Energy Lapisan Tipis ZnO. Journal Of Physic, **4**(1), 24-29.
- Madadi, M., Ghorbanpour, M., & Feizi, A. 2018. Antibacterial and photocatalytic activity of anatase phase Ag-doped TiO₂ nanoparticles. *Micro and Nano Letters*, **13**(11), 1590-1593.
- Maddhinni, V. L., Vurimindi, H. B., & Yerramilli, A. 2006. Degradation of azo dye with horse radish peroxidase (HRP). *Journal of the Indian Institute of Science*, **86**(5), 507-514.
- Maensiri, S., Laokul, P., & Promarak, V. 2006. Synthesis and optical properties of nanocrystalline ZnO powders by a simple method using zinc acetate dihydrate and poly(vinyl pyrrolidone). *Journal of Crystal Growth*, **289**(1), 102-106.
- Mamun, K., Asw, R., & Fahmida, K. 2017. Parameters affecting the photocatalytic degradation of dyes using TiO₂: a review. *Applied Water Science*, **7**(4), 1569-1578.
- Masoudian, N. 2018. Highly efficient adsorption of Naphthol Green B and Phenol Red dye by Combination of Ultrasound wave and Copper-Doped Zinc Sulfide Nanoparticles Loaded on Pistachio - Nut. *Applied Organometallic Chemistry*, **32**(8), 1-13.
- Meshram, S. P., Adhyapak, P. V., Amalnerkar, D. P., & Mulla, I. S. 2016. Cu doped ZnO microballs as effective sunlight driven photocatalyst. *Ceramics International*, **42**(6),1-27.

Misriyani, Wahab, A. W., Taba, P., & Gunlazuardi, J. 2017. Effect of

anodizing time and annealing temperature on photoelectrochemical properties of anodized TiO₂ nanotube for corrosion prevention application. *Indonesian Journal of Chemistry*, **17**(2), 219-227.

- Mittal, A., Kaur, D., Malviya, A., Mittal, J., & Gupta, V. K. 2009. Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. *Journal of Colloid And Interface Science*, **337**(2), 345-354.
- Mittal, M., Sharma, M., & Pandey, O. P. 2014. UV-Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by coprecipitation method. *Solar Energy*, **110**, 386-397.
- Mo, J., Yang, Q., Zhang, N., Zhang, W., Zheng, Y., & Zhang, Z. 2018. A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. *Journal of Environmental Management*, **227**, 395-405.
- Mo, S. Di, & Ching, W. Y. 1995. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. *Physical Review B*, **51**(19), 13023-13032.
- Modwi, A., Abbo, M. A., Hassan, E. A., Al-Duaij, O. K., & Houas, A. 2017. Adsorption kinetics and photocatalytic degradation of malachite green (MG) via Cu/ZnO nanocomposites. *Journal of Environmental Chemical Engineering*, 5(6), 5954-5960.
- Muhammad, W., Ullah, N., Haroon, M., & Abbasi, B. H. 2019. Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using: Papaver somniferum L. *RSC Advances*, **9**(51), 29541-29548.
- Munnik, P., De Jongh, P. E., & De Jong, K. P. 2015. Recent Developments in the Synthesis of Supported Catalysts. *Chemical Reviews*, **115**(14), 6687-6718.
- Nagarkar, M. G., Chitodakar, V. D., & Mandake, M. B. 2017. Catalytic Ozonation: A Rising Advanced Oxidation Technology for Textile Dyes. International Journal of Innovative Research in Science, Engineering and Technology, 6(4), 6789-6796.
- Naldoni, A., Riboni, F., Guler, U., Boltasseva, A., Shalaev, V. M., & Kildishev, A. V. 2016. Solar-Powered Plasmon-Enhanced Heterogeneous Catalysis. *Nanophotonics*, **5**(1), 112-133.
- Narayan, M. R. 2012. Review: Dye sensitized solar cells based on natural photosensitizers. *Renewable and Sustainable Energy Reviews*, **16**(1), 208-215.
- Narayanan, A. L., Dhamodaran, M., & Solomon, J. S. 2015. Thermodynamics and kinetics of adsorption of azo dye titan yellow from

aqueous solutions on natural plant material Saccharum spontaneum. *Der Pharma Chemica*, **7**(8), 36-45.

- Natarajan, S., Bajaj, H. C., & Tayade, R. J. 2017. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. *Journal of Environmental Sciences*, 65, 1-22.
- Nguyen, C. H., Tran, M. L., Tran, T. T. Van, & Juang, R. S. 2020. Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO₂/ZnO/rGO composites. *Separation and Purification Technology*, **232**, 1-14.
- Nguyen, S. T., Feng, J., Ng, S. K., Wong, J. P. W., Tan, V. B. C., & Duong, H. M. 2014. Advanced thermal insulation and absorption properties of recycled cellulose aerogels. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, **445**, 128-134.
- Nie, C., Du, H., Li, Q., Ni, J., Yuan, D., Chen, Y., Wang, B., & Wang, X. 2020. Solar-driven highly thermal electrochemical oxidation in the temperature of more than 100 °C for sustainable treatment of organic pollutants in wastewater. *Renewable Energy*, **147**, 2171-2178.
- Nigussie, G. Y., Tesfamariam, G. M., Tegegne, B. M., Weldemichel, Y. A., Gebreab, T. W., Gebrehiwot, D. G., & Gebremichel, G. E. 2018. Antibacterial activity of Ag-Doped TiO₂ and Ag-Doped ZnO nanoparticles. *International Journal of Photoenergy*, **23**, 1-7.
- Nurdin, M., Muzakkar, M. Z., Maulidiyah, M., Maulidiyah, N., & Wibowo, D. 2016. Plasmonic Silver N/TiO₂ Effect on Photoelectrocatalytic Oxidation Reaction. *Journal Mater Environ*, **7**(9), 3334-3343.
- Olimpiani, I., & Astuti. 2016. Efek Doping Senyawa Alkali Terhadap Celah Pita Energi Nanopartikel ZnO. *Jurnal Fisika Unand*, **5**(2), 115-121.
- Ong, C. B., Ng, L. Y., & Mohammad, A. W. 2018. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. *Renewable and Sustainable Energy Reviews*, **81**, 536-551.
- Pal, S., Mondal, S., Maity, J., & Mukherjee, R. 2018. Synthesis and characterization of zno nanoparticles using Moringa Oleifera leaf extract: Investigation of photocatalytic and antibacterial activity. *International Journal of Nanoscience and Nanotechnology*, **14**(2), 111-119.
- Parra, M. R., & Haque, F. Z. 2014. Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. *Journal of Materials Research and Technology*, 3(4), 363-369.

- Peng, T., Zhao, D., Dai, K., Shi, W., & Hirao, K. 2005. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. *Journal of Physical Chemistry B*, **109**(11), 4947-4952.
- Prabhu, R., Hewitt, F., Georgieva, G., Lawton, L. A., Meenakshi, H. N., & Robertson, P. K. J. 2017. Energy efficient operation of photocatalytic reactors based on UV LEDs for pollution remediation in water. *Aberdeen*, **12**, 1-5.
- Purwanto, A., & Kwartiningsih, E. 2012. Pembuatan Zat Warna Alami dalam Bentuk Serbuk untuk Mendukung Industri Batik di Indonesia. *Jurnal Rekayasa Proses*, **6**(1), 26-29.
- Raganata, T. C., Aritonang, H., & Suryanto, E. 2019. Sintesis Fotokatalis Nanopartikel Zno Untuk Mendegradasi Zat Warna Methylene Blue. *Chemistry Progress*, **12**(2), 54-58.
- Ramirez, M., Remirez, H., & Trevino, M. 2015. Synthesis Methods for Photocatalytic Material. In *Springer International Publishing Switzerland*, 69-102.
- Reddy, A. J., Kokila, M. K., Nagabhushana, H., Chakradhar, R. P. S., Shivakumara, C., Rao, J. L., & Nagabhushana, B. M. 2011. Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis. *Journal of Alloys and Compounds*, **509**, 5349–5355.
- Reddy, K. M. 2018. Photocatalytic Degradation of Organic Dyes Using Ag-TiO₂ Nanomaterials. *Journal of Chemical and Pharmaceutical Research*, **10**(2), 128-133.
- Reza, K. M., Kurny, A., & Gulshan, F. 2017. Parameters affecting the photocatalytic degradation of dyes using TiO₂: a review. *Applied Water Science*, 7(4),1-10.
- Rishikesan, S., & Basha, M. A. M. 2020. Synthesis, characterization and evaluation of antimicrobial, antioxidant & anticancer activities of copper doped zinc oxide nanoparticles. *Acta Chimica Slovenica*, **67**(1), 235-245.
- Riyani, K., Setyaningtyas, T., & Dwiasih, D. W. 2012. Pengolahan Limbah Cair Batik menggunakan Fotokatalis TiO₂-Dopan-N dengan Bantuan Sinar Matahari. *Jurnal Kimia Valensi*, **2**(5), 581-587.
- Sahoo, C., Gupta, A. K., & Pal, A. 2005. Photocatalytic degradation of Crystal Violet (C. I. Basic Violet 3) on silver ion doped TiO₂. *Dyes and Pigments*, 66(3), 189-196.
- Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., & Murugesan, V. 2003. Solar photocatalytic degradation of azo dye:

Comparison of photocatalytic efficiency of ZnO and TiO₂. Solar Energy Materials and Solar Cells, **77**(1), 65-82.

- Samanta, K., & Agarwal, P. 2009. Application of natural dyes on diverse textile materials. *Indian Journal of Fibre & Textile Research*, **34**, 384-399.
- Samavati, A., Ismail, A. F., Nur, H., Othaman, Z., & Mustafa, M. K. 2016. Spectral features and antibacterial properties of Cu-doped ZnO nanoparticles prepared by sol-gel method. *Chinese Physics Society*, 25(7), 1-7.
- Santhi, T., Manonmani, S., Vasantha, V. S., & Chang, Y. T. 2016. A new alternative adsorbent for the removal of cationic dyes from aqueous solution. *Arabian Journal of Chemistry*, **9**, 1-9.
- Sapawe, N., Jalil, A. A., Triwahyono, S., Sah, R. N. R. A., Jusoh, N. W. C., Hairom, N. H. H., & Efendi, J. 2013. Electrochemical strategy for grown ZnO nanoparticles deposited onto HY zeolite with enhanced photodecolorization of methylene blue: Effect of the formation of SiOZn bonds. *Applied Catalysis A: General*, **456**, 144-158.
- Saravanan, R., Gracia, F., Mansoob, M., Poornima, V., Kumar, V., Narayanan, V., & Stephen, A. 2015. ZnO/CdO nanocomposites for textile ef fl uent degradation and electrochemical detection. *Journal of Molecular Liquids*, **209**, 374-380.
- Sarwono, R., & Tursiloadi, S. 2015. Morfologi Dan Aktifitas Katalis Logam Cu Dengan Penyangga Mono Dan Bimetalik Oksida Cara Kerja Impregnasi Ko-Presipitasi. *Jurnal Sains Materi Indonesia*, **16**(2), 76-82.
- Sathishkumar, P., Sweena, R., Wu, J. J., & Anandan, S. 2011. Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution. *Chemical Engineering Journal*, **171**(1), 136-140.
- Savitri, S., Nugraha, A. S., & Aziz, I. 2016. Pembuatan Katalis Asam (Ni/γ-Al₂O₃) dan Katalis Basa (Mg/γ-Al₂O₃) untuk Aplikasi Pembuatan Biodiesel dari Bahan Baku Minyak Jelantah. *Jurnal Penelitian Dan Pengembangan*, **2**(1), 1-10.
- Scanlon, D. O., Dunnill, C. W., Buckeridge, J., Shevlin, S. A., Logsdail, A. J., Woodley, S. M., Catlow, C. R. A., Powell, M. J., Palgrave, R. G., Parkin, I. P., Watson, G. W., Keal, T. W., Sherwood, P., Walsh, A., & Sokol, A. A. 2013. Band alignment of rutile and anatase TiO₂. *Nature Materials*, **12**(9), 1-4.
- Schumann, J., Eichelbaum, M., Lunkenbein, T., Thomas, N., Álvarez Galván, M. C., Schlögl, R., & Behrens, M. 2015. Promoting strong metal support interaction: Doping ZnO for enhanced activity of Cu/ZnO:M

(M = Al, Ga, Mg) catalysts. ACS Catalysis, **5**(6), 3260-3270.

- Shahpal, A., Aziz Choudhary, M., & Ahmad, Z. 2017. An investigation on the synthesis and catalytic activities of pure and Cu-doped zinc oxide nanoparticles. *Cogent Chemistry*, **3**(1), 1-12.
- Shanmugam, V., & Jeyaperumal, K. S. 2017. Investigations of visible light driven Sn and Cu doped ZnO hybrid nanoparticles for photocatalytic performance and antibacterial activity. *Applied Surface Science*, **449**, 1-45.
- Sharma, K., Dalai, A. K., & Vyas, R. K. 2017. Removal of synthetic dyes from multicomponent industrial wastewaters. *Reviews in Chemical Engineering*, **34**(1), 1-29.
- Shedbalkar, U., Dhanve, R., & Jadhav, J. 2008. Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. *Journal of Hazardous Materials*, **157**(3), 472-479.
- Silveira, E., Marques, P. P., Silva, S. S., Lima-Filho, J. L., Porto, A. L. F., & Tambourgi, E. B. 2009. Selection of Pseudomonas for industrial textile dyes decolourization. *International Biodeterioration and Biodegradation*, **63**(2), 230-235.
- Singh, K., & Arora, S. 2011. Removal of synthetic textile dyes from wastewaters: A critical review on present treatment technologies. *Critical Reviews in Environmental Science and Technology*, **41**(9), 807-878.
- Singh, R., Singh, P., & Singh, R. 2014. Bacterial decolorization of textile azo dye acid orange by staphylococcus hominis RMLRT03. *Toxicology International*, **21**(2), 160-166.
- Sobana, N., Muruganadham, M., & Swaminathan, M. 2006. Nano-Ag particles doped TiO₂ for efficient photodegradation of Direct azo dyes. *Journal of Molecular Catalysis A: Chemical*, **258**(2), 124-132.
- Sood, S., Umar, A., Mehta, S. K., & Kansal, S. K. 2015. Highly effective Fedoped TiO₂ nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. *Journal of Colloid and Interface Science*, **450**, 213-223.
- Sucahya, T. N., Permatasari, N., Bayu, A., & Nandiyanto, D. 2016. Fotoktalisis untuk Pengolahan Limbah Cair. *Jurnal Integrasi Proses*, **6**(1), 1-15.
- Supriyanto, E., & Holikin, A. 2007. Pengaruh Thermal Annealing terhadap Struktur Kristal dan Morfologi Bubuk Titanium Dioksida (TiO₂) The Thermal Annealing Effect on Crystal Structure and Morphology of Titanium Dioxide (TiO₂) Powder. *Jurnal Ilmu Dasar*, **15**(1), 37-41.

- Tarkwa, J. B., Oturan, N., Acayanka, E., Laminsi, S., & Oturan, M. A. 2019. Photo-Fenton oxidation of Orange G azo dye: process optimization and mineralization mechanism. *Environmental Chemistry Letters*, **17**(1), 473-479.
- Toback, F. G., Margaret, M., & Phe-, F. G. T. 2019. Phenol red inhibits growth of renal epithelial. *American Journal of Physiology-Renal Physiology*, **11**, 687-691.
- Türkyılmaz, Ş. Ş., Güy, N., & Özacar, M. 2017. Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic / antagonistic effect between ZnO and metals. *Journal of Photochemistry & Photobiology*, **341**, 1-42.
- Vidya, C., Manjunatha, C., Sudeep, M., Ashoka, S., & Lourdu Antony Raj, M. A. 2020. Photo-assisted mineralisation of titan yellow dye using ZnO nanorods synthesised via environmental benign route. SN Applied Sciences, 2(4), 1-15.
- Wahab, H. S., & Hussain, A. A. 2016. Photocatalytic oxidation of phenol red onto nanocrystalline TiO₂ particles. *Journal of Nanostructure in Chemistry*, 6(3), 261-274.
- Wang, P., Wang, D., Li, H., Xie, T., Wang, H., & Du, Z. 2007. A facile solution-phase synthesis of high quality water-soluble anatase TiO2 nanocrystals. *Journal of Colloid and Interface Science*, **314**(1), 337-340.
- Wang, X. B., Li, D. M., Zeng, F., & Pan, F. 2005. Microstructure and properties of Cu-doped ZnO films prepared by dc reactive magnetron sputtering. *Journal of Physics D: Applied Physics*, **38**(22), 4104-4108.
- Wang, Y., Yan, L., He, X., Li, J., & Wang, D. 2016. Controlled fabrication of Ag/TiO₂ nanofibers with enhanced stability of photocatalytic activity. *Journal of Materials Science: Materials in Electronics*, **27**(5), 1-7.
- Weldegebrieal, G. K. 2020. Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. *Inorganic Chemistry Communications*, **120**, 1-29.
- Xu, C.-L., Qin, D.-H., Li, H., Guo, Y., Xu, T., & Li, H.-L. 2004. Lowtemperature growth and optical properties of radial ZnO nanowires. *Materials Letters*, **58**(30), 3976-3979.
- Yan, X., Yuan, K., Lu, N., Xu, H., Zhang, S., Takeuchi, N., Kobayashi, H., & Li, R. 2017. The interplay of sulfur doping and surface hydroxyl in band gap engineering: Mesoporous sulfur-doped TiO₂ coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification. *Applied Catalysis B: Environmental*, **218**, 1-34.

Yaseen, D. A., & Scholz, M. (2019). Textile dye wastewater characteristics

and constituents of synthetic effluents: a critical review. *International journal of environmental science and technology*, **16**(2), 1193-1226.

- Yaseen, Dina A., & Scholz, M. 2018. Treatment of synthetic textile wastewater containing dye mixtures with microcosms. *Environmental Science and Pollution Research*, **25**(2), 1980-1997.
- Zhang, F., Cheng, Z., Kang, L., Cui, L., Liu, W., Xu, X., Hou, G., & Yang, H. 2015. A novel preparation of Ag-doped TiO₂ nanofibers with enhanced stability of photocatalytic activity. *RSC Advances*, 5(41), 32088-32091.
- Zhao, H., Deng, W., & Li, Y. 2017. Atomic layer deposited TiO₂ ultrathin layer on Ag_ZnO nanorods for stable and efficient photocatalytic degradation of RhB. Advanced Composites and Hybrid Materials, 1(2), 404-413.
- Zhao, Z., Wang, L., Fan, J., Song, Y., Chu, G., & Shao, L. 2020. Degradation of indigo carmine by coupling Fe(II)-activated sodium persulfate and ozone in a rotor-stator reactor. *Chemical Engineering and Processing-Process Intensification*, **148**, 1-6.
- Zhou, S., Fu, Z., Xia, L., Mao, Y., Zhao, W., & Wang, A. 2021. In situ synthesis of ternary hybrid nanocomposites on natural Juncus effusus fiber for adsorption and photodegradation of organic dyes. *Separation* and Purification Technology, 255, 1-10.
- Zhu, C., Wang, L., Kong, L., Yang, X., Wang, L., Zheng, S., Chen, F., Maizhi, F., & Zong, H. 2000. Photocatalytic degradation of AZO dyes by supported TiO₂⁺ UV in aqueous solution. *Chemosphere*, **41**(3), 303-309.
- Zhu, K. R., Zhang, M. S., Hong, J. M., & Yin, Z. 2005. Size effect on phase transition sequence of TiO₂ nanocrystal. *Materials Science and Engineering A*, **403**(2), 87-93.
- Zong, X., & Wang, L. 2014. Ion-exchangeable semiconductor materials for visible light-induced photocatalysis. *Journal of Photochemistry and Photobiology*, **18**, 1-62.

LAMPIRAN 1. Skema Prosedur Kerja

1. Aktivasi semikonduktor

a. Seng Oksida (ZnO)

2. Sintesis Katalis Cu/ZnO

a. Seng Oksida (ZnO)

b. Tembaga Nitrat Cu (NO₃)₂

3. Aktivasi semikonduktor

a. Titanium Dioksida (TiO₂)

4. Sintesis Katalis Ag/TiO₂

a. Titanium dioksida (TiO₂)

b. Perak nitrat (AgNO₃)

5. Penentuan panjang gelombang maksimum titan kuning dan fenol merah

6. Pembuatan kurva kalibrasi titan kuning dan fenol merah

Larutan baku zat warna TK dan FM	
 dibuat 14 dar diukur pada <i>i</i> dibuat absort 	t deret konsentrasi 2, 4, 6, 8 dan 10, 12, n 16 ppm · absorbansi masing-masing larutan λ _{max} : kurva hubungan konsentrasi dan bansi
Kurva standar zat wa TK dan FM	rna

7. Penentuan Kondisi Optimum Fotodegradasi

a. Penentuan bobot optimum

b. Penentuan waktu kontak optimum

c. Penentuan konsentrasi optimum

d. Penentuan efektivitas campuran zat warna TK dan FM

Lampiran 2. Dokumentasi Kegiatan Penelitian

Bubuk ZnO

Larutan ZnO (Larutan I)

Tembaga nitrat

Larutan tembaga nitrat (Larutan II)

Larutan I dan Larutan II

Cu/ZnO sebelum kalsinasi

Proses kalsinasi

Cu/ZnO setelah kalsinasi

Serbuk TiO₂

Larutan TiO2 dan Perak nitrat

Proses penetralan

Proses penghalusan

Ag/TiO2 sebelum kalsinasi

Ag/TiO2 setelah kalsinasi

Titan kuning

Fenol merah

Larutan titan kuning

Larutan fenol merah

Cu/ZnO

0.309

3454.51

3419.79

0.835

0.021

TiO₂

22

3439.08

94.427

Ag/TiO₂

Titan kuning

Fenol Merah

Cu/ZnO TK

No.	Peak	Intensity	Corr.	Base (H)	Base (L)	Area	Corr.
			Intensity				Area
1	433.98	1.772	96.348	648.08	343.33	263.211	261.399
2	698.23	98.84	0.471	719.45	680.87	0.152	0.037
3	732.95	99.266	0.236	754.17	719.45	0.091	0.02
4	871.82	97.035	2.632	954.76	767.67	1.179	0.931
5	987.55	97.887	0.836	1004.91	954.76	0.324	0.082
6	1037.7	97.904	1.079	1066.64	1004.91	0.438	0.153
7	1132.21	99.141	0.314	1159.22	1105.21	0.161	0.032
8	1178.51	99.234	0.383	1232.51	1159.22	0.136	0.066
9	1332.81	97.053	0.653	1344.38	1288.45	0.479	0.095
10	1382.96	96.652	0.8	1433.11	1363.67	0.765	0.093
11	1440.83	98.532	0.318	1460.11	1433.11	0.135	0.023
12	1485.19	98.649	0.448	1496.76	1460.11	0.166	0.04
13	1595.13	97.16	2.741	1651.07	1560.41	0.658	0.637
14	1666.5	99.121	0.648	1680	1651.07	0.063	0.037
15	2212.35	99.172	0.21	2239.36	2154.49	0.255	0.027
16	2339.65	94.047	5.122	2364.73	2239.36	1.411	1
17	2615.47	98.976	0.926	2723.49	2420.66	0.775	0.567
18	2926.01	98.706	0.566	2945.3	2868.15	0.238	0.063
19	3444.87	89.132	10.543	3626.17	3178.69	12.454	11.796

TiO2-TK

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	354.9	57.693	39.024	378.05	343.33	3.797	3.388
2	385.76	98.663	1.116	401.19	378.05	0.073	0.052
3	511.14	57.52	42.435	601.79	403.12	25.84	25.788
4	698.23	48.807	50.995	852.54	603.72	43.459	43.335
5	862.18	99.583	0.576	873.75	852.54	0.004	0.018
6	889.18	99.522	0.466	923.9	877.61	0.038	0.031
7	1029.99	99.428	0.48	1076.28	1002.98	0.111	0.073
8	1298.09	99.64	0.148	1313.52	1257.59	0.066	0.017
9	1438.9	99.195	0.681	1456.26	1419.61	0.073	0.052
10	1485.19	99.111	0.796	1506.41	1456.26	0.118	0.1
11	1525.69	99.565	0.363	1539.2	1512.19	0.028	0.019
12	1597.06	96.988	0.984	1616.35	1539.2	0.662	0.2
13	1627.92	97.105	0.591	1647.21	1616.35	0.34	0.045
14	1658.78	97.909	0.807	1697.36	1647.21	0.261	0.073
15	1724.36	99.307	0.631	1741.72	1697.36	0.069	0.058
16	1853.59	99.638	0.311	1867.09	1834.3	0.028	0.02
17	1899.88	99.635	0.131	1915.31	1890.24	0.031	0.007
18	2370.51	98.202	1.117	2399.45	2353.16	0.23	0.1
19	2854.65	99.568	0.165	2873.94	2831.5	0.062	0.014
20	2926.01	99.345	0.331	2949.16	2873.94	0.144	0.039
21	3039.81	99.702	0.164	3086.11	3010.88	0.066	0.026
22	3450.65	95.296	0.312	3500.8	3435.22	1.293	0.059

Ag/TiO₂-TK

ZnO-FM

SHIMADZU

Cu/ZnO-FM

🕀 SHIMADZU

with when the 100-1591.27 1529.55 1487.12 1444.68 1936.53--1730.15— 1666.50— 82 2605.83-1166.93-1857.45 2926.01 2355.08-879.54 3165. 3093. %Т 419 79-80 60 40 702.09 101 20 2000 1750 1500 1250 4000 TiO2 FM 3500 3000 2500 1000 750 500 1/cm Peak Intensity Corr. Base (H) Base (L) No. Area Corr. Intensity Area 354.9 374.19 6.591 36.027 60.145 343.33 6.137 1 28.815 2 501.49 71.515 596 376.12 59.779 60.078 3 702.09 28.862 71.39 864.11 596 82.736 82.976 4 0.115 879.54 97.594 2.467 898.83 864.11 0.126 5 1166.93 99.415 0.243 1193.94 1134.14 0.118 0.031 1444.68 98.937 0.658 1456.26 1440.83 0.038 0.024 6 7 1487.12 98.719 0.469 1490.97 1481.33 0.044 0.011 8 1529.55 98.828 0.808 1543.05 1523.76 0.055 0.032 97.406 9 1591.27 0.548 1600.92 1575.84 0.244 0.03 10 1666.5 98.581 0.378 1680 1664.57 0.063 0.019 11 1730.15 99.269 0.544 1741.72 1724.36 0.025 0.019 1857.45 1847.81 12 98.944 0.568 1869.02 0.064 0.02 1946.18 -0.001 13 1936.53 99.77 0.027 1934.6 0.007 14 2355.08 98.434 2374.37 2339.65 0.132 1.26 0.089 15 2605.83 99.552 0.166 2681.05 2565.33 0.161 0.041 2926.01 2870.08 0.062 16 99.241 0.51 2947.23 0.139 99.653 17 3093.82 0.161 3116.97 3082.25 0.037 0.013 18 3165.19 99.71 0.109 3182.55 3151.69 0.031 0.007

TiO₂-FM

19

3419.79

93.168

0.24

3425.58

3188.33

3.491

0.071

🕀 SHIMADZU

Ag/TiO₂-FM

🕀 SHIMADZU

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	352.97	58.905	37.562	370.33	343.33	3.235	2.882
2	489.92	48.259	51.335	599.86	379.98	38.099	37.709
3	705.95	48.618	50.497	856.39	601.79	47.569	46.654
4	912.33	99.007	0.276	935.48	896.9	0.141	0.023
5	983.7	98.799	0.541	1037.7	962.48	0.242	0.069
6	1161.15	99.112	0.5	1199.72	1130.29	0.188	0.074
7	1226.73	99.538	0.218	1259.52	1199.72	0.085	0.023
8	1342.46	99.502	0.357	1357.89	1332.81	0.036	0.021
9	1382.96	97.828	0.679	1392.61	1357.89	0.215	0.051
10	1433.11	95.988	1.36	1452.4	1392.61	0.814	0.16
11	1463.97	96.627	0.126	1471.69	1462.04	0.133	0.001
12	1560.41	98.443	0.381	1564.27	1554.63	0.054	0.007
13	1627.92	97.143	1.347	1641.42	1595.13	0.362	0.11
14	1654.92	96.752	1.949	1672.28	1641.42	0.287	0.123
15	1683.86	99.077	0.16	1693.5	1681.93	0.032	0.004
16	1718.58	98.941	0.337	1730.15	1712.79	0.062	0.015
17	1749.44	98.699	0.84	1764.87	1737.86	0.107	0.053
18	1801.51	98.663	0.759	1822.73	1789.94	0.127	0.053
19	1845.88	99.133	0.437	1863.24	1840.09	0.056	0.023
20	2276	99.098	0.971	2322.29	2156.42	0.388	0.389
21	2372.44	96.229	3.914	2407.16	2353.16	0.353	0.379
22	2926.01	98.938	0.59	2951.09	2875.86	0.227	0.07
23	3078.39	99.305	0.457	3120.82	3043.67	0.153	0.076
24	3450.65	87.096	1.458	3477.66	3184.48	9.195	0.882

Lampiran 4. Hasil Karakterisasi dengan XRD

Hkl ZnO

Name and formula

Reference code:	00-036-1451		
Mineral name:	Zincite, syn		
Common name:	chinese white		
PDF index name:	Zinc Oxide		
Empirical formula:	OZn		
Chemical formula:	ZnO		

Crystallographic parameters

Crystal system: Space group: Space group number:	Hexagonal P63mc 186
a (Å):	3,2498
b (Å):	3,2498
c (Å):	5 , 2066
Alpha (°):	90 , 0000
Beta (°):	90 , 0000
Gamma (°):	120,0000
Volume of cell (10^6 pm^3):	47,62
Z:	2,00
RIR:	-

Subfiles and Quality

Subfiles:

Inorganic Mineral Alloy, metal or intermetalic Common Phase Educational pattern Forensic NBS pattern Pigment/Dye Star (S)

Quality:

Comments

Color:	Colorless
General comments:	The structure was determined by Bragg (1) and refined
	by Abrahams, Bernstein (2).
Sample source:	The sample was obtained from the New Jersey Zinc

	Co., Bethlehem, PA, USA.
Optical data:	B=2.013, Q=2.029, Sign=+
Polymorphism:	A high pressure cubic NaCl-type of ZnO is reported by
	Bates et al. (3) and a cubic, sphalerite type is reported
	by Radczewski, Schicht (4).
Additional pattern:	To replace 5-664 (5).
Temperature:	The approximate temperature of data collection was 26
	С.
Powder data (additional reference	e): References to other early patterns may be found in reference (5).

References

Primary reference:	McMurdie, H., Morris, M., Evans, E., Paretzkin, B.,
-	Wong-Ng, W., Ettlinger, L., Hubbard, C., Powder
	Diffraction, 1 , 76, (1986)
Structure:	1. Bragg, W., <i>Philos. Mag.</i> , 39 , 647, (1920)
Optical data:	Dana's System of Mineralogy, 7th Ed., I, 504
Polymorphism:	3. Bates, C., White, W., Roy, R., <i>Science</i> , 137 , 993, (1962)
Additional pattern:	5. Swanson, H., Fuyat, R., <i>Natl. Bur. Stand. (U.S.),</i> <i>Circ.</i> 539, 2 , 25, (1953)

Peak list

No.	h	k	1	d [A]	2Theta[d	leg] I [%]
1	1	0	0	2,81430	31 , 770	57,0
2	0	0	2	2,60332	34,422	44,0
3	1	0	1	2,47592	36 , 253	100,0
4	1	0	2	1,91114	47 , 539	23,0
5	1	1	0	1,62472	56 , 603	32,0
6	1	0	3	1,47712	62 , 864	29,0
7	2	0	0	1,40715	66 , 380	4,0
8	1	1	2	1,37818	67 , 963	23,0
9	2	0	1	1,35825	69 , 100	11,0
10	0	0	4	1,30174	72 , 562	2,0
11	2	0	2	1,23801	76 , 955	4,0
12	1	0	4	1,18162	81 , 370	1,0
13	2	0	3	1,09312	89 , 607	7,0
14	2	1	0	1,06384	92 , 784	3,0
15	2	1	1	1,04226	95 , 304	6,0
16	1	1	4	1,01595	98,613	4,0
17	2	1	2	0,98464	102,946	2,0
18	1	0	5	0,97663	104,134	5,0
19	2	0	4	0,95561	107,430	1,0
20	3	0	0	0,93812	110 , 392	3,0
21	2	1	3	0,90694	116 , 279	8,0
22	3	0	2	0,88256	121 , 572	4,0
23	0	0	6	0,86768	125 , 188	1,0
24	2	0	5	0,83703	133 , 932	3,0
25	1	0	6	0,82928	136 , 521	1,0
26	2	1	4	0,82370	138,513	2,0
27	2	2	0	0,81247	142 , 918	3,0

Stick Pattern

Hkl TiO₂

Name and formula

Reference code:	01-075-1537
Mineral name:	Anatase
ICSD name:	Titanium Oxide
Empirical formula:	O ₂ Ti
Chemical formula:	TiO ₂

Crystallographic parameters

Crystal system:	Tetragonal
Space group:	I41/amd
Space group number:	141
a (Å):	3,7300
b (Å):	3,7300
c (Å):	9,3700
Alpha (°):	90,0000
Beta (°):	90,0000
Gamma (°):	90,0000
Calculated density (g/cm^3):	4,07
Volume of cell (10^6 pm^3):	130,36
Z:	4,00
RIR:	5,20

Subfiles and Quality

Subfiles:	Inorganic Mineral
	Alloy, metal or intermetalic
	Corrosion
	Modelled additional pattern
Quality:	Calculated (C)

Comments

ICSD collection code:	031064
Test from ICSD:	No R value given.
	At least one TF missing.

References

Primary reference:	Calculated from ICSD using POWD-12++, (1997)
Structure:	Parker, R.L., Z. Kristallogr., Kristallgeom., Kristallphys.,
	Kristallchem., 59 , 1, (1924)

<u>Peak list</u>

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	1	0	1	3 , 46551	25 , 686	100,0
2	1	0	3	2,39467	37,528	4,2
3	0	0	4	2,34250	38,396	13,8
4	1	1	2	2,29833	39,164	7,3
5	2	0	0	1,86500	48,791	21,4
6	1	0	5	1,67454	54,775	13,2
7	2	1	1	1,64228	55 , 944	13,2
8	2	1	3	1,47140	63 , 137	1,7
9	2	0	4	1,45905	63 , 734	7,6
10	1	1	6	1,34378	69,952	5,1
11	2	2	0	1 , 31875	71 , 481	4,1
12	1	0	7	1,25990	75,381	0,5
13	2	1	5	1,24599	76 , 373	6,2
14	3	0	1	1,23253	77 , 361	1,7
15	0	0	8	1,17125	82,245	0,2
16	3	0	3	1 , 15517	83,645	0,3
17	2	2	4	1,14916	84,183	2,5
18	3	1	2	1,14383	84,666	1,2

Stick Pattern

Ukuran kristal ZnO

Posisi Puncak	FWHM	Ukuran Kristal D	Ukuran rata-rata
2θ	(rad)	(nm)	kristal D (nm)
31,842	0,269	30,673	30,224
34,496	0,259	32,038	
36,330	0,254	32,830	
47,621	0,241	35,972	
56,680	0,271	33,220	
62,945	0,277	33,518	
66,454	0,246	38,460	
68,033	0,296	32,353	
69,167	0,291	33,112	

Ukuran kristal Cu/ZnO

Posisi Puncak	FWHM	Ukuran Kristal D	Ukuran rata-rata
20	(rad)	(nm)	kristal D (nm)
28,680	0,356	23,031	16,285
28,680	123,639	0,066	
31,838	0,344	23,954	
33,234	5,721	1,448	
34,500	0,319	25,999	
36,326	0,371	22,512	
45,367	74,634	0,115	
56,664	0,464	19,425	
62,957	0,429	21,704	
68,053	0,475	20,178	
69,176	0,465	20,708	

Ukuran kristal TiO₂

Posisi Puncak	FWHM	Ukuran Kristal D	Ukuran rata-rata
20	(rad)	(nm)	kristal D (nm)
25,362	0,295	27,559	32,492
37,021	0,233	35,812	
37,865	0,249	33,683	
38,638	0,257	32,682	
48,126	0,280	30,989	
53,972	0,267	33,355	
55,145	0,263	34,058	
62,197	0,288	32,188	
62,768	0,275	33,748	
68,841	0,299	32,128	
70,367	0,291	33,289	
75,126	0,329	30,416	

Ukuran kristal Ag/TiO₂

Posisi Puncak	FWHM	Ukuran Kristal D	Ukuran rata-rata
20	(rad)	(nm)	kristal D (nm)
25,812	0,831	9,804	28,723
38,059	0,529	15,859	
43,410	0,367	23,238	
48,165	0,342	25,399	
54,015	0,323	27,534	
55,179	0,214	41,821	
62,979	0,214	43,462	
64,412	0,214	43,744	
75,396	0,363	27,647	

Derajat Kristalinitas ZnO

Area	AreaIntgP(%)	Row Index	Beginning X	Ending X	FWHM	Center	Height
Integral Result of "Data"	Integral Result of "Data"	Integral Result of "Data"	Integral Result of "Data"	Integral Result of "Data"	Integral Result of "Data"	Integral Result of "Data"	Integral Result of "Data"
1618,43226	4,9811	2687	31,28	32,3	0,27871	31,88	4663,192
1267,55285	3,90119	2953	33,88	35,03	0,27532	34,52	3335,61932
2469,73704	7,60119	3135	35,79	36,79	0,25733	38,34	8054,98151
775,52073	2,38684	4262	47,19	48,01	0,27913	47,61	2197,60488
1378,13798	4,24154	5167	55,98	57,14	0,29185	56,66	3356,34709
1094,97622	3,37004	5792	62,37	63,47	0,31001	62,91	2884,48689
358,11128	1,09601	6144	66,16	66,8	0,62245	66,43	808,67753
1014,17816	3,12137	6301	67,55	68,62	0,32322	68	2598,49169
603,00643	1,85589	6414	68,77	69,57	0,36385	69,13	1500,54248
	Area Integral Result of "Data" 1618,43226 1267,56285 2469,73704 775,52073 1378,13788 1094,97622 366,11128 1014,17818 003,00643	Area AreaIntgP(%) Integral Result of "Data" Integral Result of "Data" 1618,43228 4,9811 1287,55285 3,90119 2469,73704 7,60119 775,52073 2,38884 1378,13798 4,24154 1094,97822 3,37004 366,11128 1,09601 1014,17816 3,12137 603,00643 1,85689	Area AreaIntgP(%) Row Index Integral Result of "Data" Integral Result of "Data" Integral Result of "Data" 1018,43226 4,9811 2687 1207,56285 3,90119 2853 2489,73704 7,00119 3135 775,52073 2,38684 4262 1378,13798 4,24154 5167 1094,97622 3,37004 67792 356,11126 1,09601 6144 1014,17616 3,12137 6301 603,00643 1,85689 6414	Area AreaIntpP(%) Row Index Beginning X Integral Result of "Data" Integral Result of "Data" Integral Result of "Data" Integral Result of "Data" 1618,43226 4,9811 2687 31,28 1267,55285 3,90119 2863 33,88 2499,73704 7,60119 3135 35,79 775,52073 2,38684 4282 47,19 1378,13798 4,24154 5167 56,96 1094,97622 3,37004 5792 62,37 356,11126 1,08001 6144 66,16 1014,17816 3,12137 6301 67,55 603,00643 1,8558 6414 68,77	Area AreaIntgP(%) Row Index Beginning X Ending X Integral Result of "Data" Integral Result of "D	Area AreaIntgP(%) Row Index Beginning X Ending X FWHM Integral Result of "Data" Integral Result of "Data" <td< td=""><td>Area AreaIntpP(%) Row Index Beginning X Ending X FWHM Center Integral Result of "Data" Integral Result of</td></td<>	Area AreaIntpP(%) Row Index Beginning X Ending X FWHM Center Integral Result of "Data" Integral Result of

Area Puncak Kristalin	Fraksi Luas Kristalin	Luas Difraktogram
20		
1618,432	10577,652	18491,470
1267,552		
2469,737		
775,520		
1378,137		
1094,976		
356,111		
1014,178		
603,006		

Kristalinitas = $\frac{\text{Fraksi luas kristalin}}{\text{Luas difragtogram}} \ge 100$

$$=\frac{10577,652}{18491,470} \ x \ 100$$

= 57,20%.

Derajat Kristalinitas Cu/ ZnO

Index	Area	AreaIntgP(%)	Row Index	Beginning X	Ending X	FWHM	Center	Height
Integral Result of "Data"								
1	2264,57928	7,62388	2686	30,57	33,51	0,34163	31,85	3141,90938
2	1331,39194	4,48223	2951	33,71	35,17	0,33423	34,5	2568,63628
3	2423,69334	8,15955	3134	35,56	37,32	0,32639	36,33	5175,78238
4	880,4783	2,9642	4284	46,88	48,26	0,41999	47,63	1389,24231
5	1472,787	4,95825	5168	55,66	57,65	0,41843	56,67	1971,31981
6	1180,06475	3,97278	5793	62,14	63,8	0,45475	62,92	1671,29902
7	475,20584	1,59982	6144	65,97	66,96	0,98	66,43	617,0758
8	1109,66767	3,73578	6301	67,14	68,71	0,50855	68	1503,78591
9	591,33241	1,99077	6415	68,71	69,7	0,80365	69,14	881,50018

Area Puncak Kristalin 2θ	Fraksi Luas Kristalin	Luas Difraktogram
2264,579	11729,200	33703,766
1331,391		
2423,693		
880,478		
1472,787		
1180,064		
475,205		
1109,667		
591,332]	

 $Kristalinitas = \frac{Fraksi \ luas \ kristalin}{Luas \ difragtogram} \ x \ 100$

$$=\frac{11729,200}{33703,766} x \ 100$$

= 34,80%

Derajat Kristalinitas TiO₂

Index	Area	AreaIntgP(%)	Row Index	Beginning X	Ending X	FWHM	Center	Height
Integral Result of "Data"								
1	746,04053	19,49182	2041	24,8	28,28	0,30151	25,39	2122,94553
2	169,41388	4,42828	3289	37,41	38,32	0,25154	37,87	561,27876
3	276,87052	7,2338	4313	47,81	48,85	0,28161	48,11	829,64384
4	163,90208	4,28227	4886	53,37	54,49	0,27641	53,94	514,24781
5	165,33803	4,31974	5004	54,63	55,84	0,28633	55,12	511,03195
6	125,58848	3,2812	5768	62,46	63,18	0,2852	62,74	435,50498

Area Puncak Kristalin 2θ	Fraksi Luas Kristalin	Luas Difraktogram
746,040	1647,149	2554,773
169,413		
276,870		
163,902		
165,336		
125,586		

Kristalinitas = $\frac{\text{Fraksi luas kristalin}}{\text{Luas difragtogram}} \ge 100$

$$=\frac{1647,149}{2554,773} \times 100$$

= 64,47%.

Derajat Kristalinitas Ag/TiO₂

Index	Area	AreaIntgP(%)	Row Index	Beginning X	Ending X	FWHM	Center	Height
Integral Result of "Data"								
1	1484,76381	28,13189	2085	25,1	28,76	0,24779	25,84	5767,39788
2	349,98179	6,63074	3313	37,41	38,56	0,23427	38	1299,81785
3	91,10453	1,72816	3855	42,89	43,77	0,18415	43,42	381,34049
4	122,55942	2,32214	4327	47,68	48,87	0,25374	48,14	358,92338
5	92,16949	1,74634	5953	64,1	64,83	0,16843	64,4	373,33229
6	163,07248	3,08974	7051	74,71	75,94	0,14178	75,38	564,1872

Area Puncak Kristalin 2θ	Fraksi Luas Kristalin	Luas Difraktogram
1484,763	2303,631	5764,708
349,961		
91,104		
122,559		
92,169		
163,072		

Kristalinitas = $\frac{\text{Fraksi luas kristalin}}{\text{Luas difragtogram}} \ge 100$

$$=\frac{2303,631}{5764,708} \ x \ 100$$

Lampiran 5. Hasil Karakterisasi dengan SEM

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI UNIVERSITAS DIPONEGORO UPT. LABORATORIUM TERPADU

Jalan Prof. Sudarto, S.H. Tembalang Semarang Kode Pos 50275 Tel. (024) 76918147 Faks. (024) 76918147 www.labter

Halaman : 1 dari 1

Nomor Sampel Uji	1	SP-XII-1432
Nama	:	Desy Nurhasanah Sari
Alamat/Instansi	:	Universitas Hasanuddin
Dibuat untuk	:	•
Tanggal Pengambilan /	:	23 Agustus 2021
Penerimaan Sampel Uji		
Kemasan Sampel Uji	:	Tube Plastik

HASIL PENGUJIAN / PENGUKURAN

Catatan:

- Laboratorium Terpadu Universitas Diponegoro Semarang tidak bertanggung jawab terhadap penyalahgunaan hasil analisis ini.
- separatorium Terpadu in Japona ini ruma sepir Semarang 24 Agustus 20 Erran Bildong Pengujian d Ini 198003101989032001 Hasil analisis ini hanya berlaku untuk sampel uji yang dikirimkan ke UPT Laboratorium Terpadu Universitas Diponegoro Dilarang mengutip/meng-copy dan/atau mempublikasikan sebagian isi laporan ini tanpa seijin UPT Laboratorium Terpadu Universitas Diponegoro.

dang Pengujian dan Sertifikasi

E-mail : labterpadu@live.undip.ac.id

Hasil Uji SEM ZnO

Perbesaran 3.000x

Perbesaran 5.000x

Perbesaran 10.000x

Perbesaran 15.000x

Hasil Uji SEM ZnO TK

Perbesaran 3.000x

Perbesaran 5.000x

Perbesaran 10.000x

Perbesaran 15.000x

Hasil Uji SEM ZnO FM

Perbesaran 3.000x

Perbesaran 5.000x

Perbesaran 10.000x

Perbesaran 15.000x

E-mail : labterpadu@live.undip.ac.id

Hasil Uji SEM Cu/ZnO

Perbesaran 3.000x

Perbesaran 5.000x

Perbesaran 10.000x

Perbesaran 15.000x

E-mail : labterpadu@live.undip.ac.id

Hasil Uji SEM Cu/ZnO TK

Perbesaran 3.000x

Perbesaran 5.000x

Perbesaran 10.000x

Perbesaran 15.000x

Hasil Uji SEM Cu/ZnO FM

Perbesaran 3.000x

Perbesaran 5.000x

Perbesaran 10.000x

Perbesaran 15.000x

Hasil Uji SEM TiO₂

Perbesaran 3.000x

Perbesaran 5.000x

Perbesaran 10.000x

Perbesaran 15.000x

Hasil Uji SEM TiO2 TK

Perbesaran 3.000x

Perbesaran 5.000x

Perbesaran 10.000x

Perbesaran 15.000x

KEMENTERIAN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS DIPONEGORO **UPT LABORATORIUM TERPADU** Jalan Prof. Soedarto, SH Tembalang Semarang Kotak Pos 1269

Jalan Prof. Soedarto, SH Tembalang Semarang Kotak Pos 1269 Telepon (024) 76918147- Faksimile (024) 76918148, Website : <u>http://labterpadu.undip.ac.id;</u> E-mail : <u>labterpadu@live.undip.ac.id</u>

Hasil Uji SEM TiO₂ FM

Perbesaran 10.000x

Perbesaran 15.000x

Perbesaran 10.000x

Perbesaran 15.000x

Hasil Uji SEM Ag/TiO₂

Perbesaran 3.000x

Perbesaran 5.000x

Perbesaran 10.000x

Perbesaran 15.000x

Hasil Uji SEM Ag/TiO₂ TK

Perbesaran 3.000x

Perbesaran 5.000x

Perbesaran 10.000x

Perbesaran 15.000x

KEMENTERIAN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS DIPONEGORO **UPT LABORATORIUM TERPADU** Jalan Prof. Soedarto, SH Tembalang Semarang Kotak Pos 1269

Jalan Prof. Soedarto, SH Tembalang Semarang Kotak Pos 1269 Telepon (024) 76918147- Faksimile (024) 76918148, Website : <u>http://labterpadu.undip.ac.id;</u> E-mail : <u>labterpadu@live.undip.ac.id</u>

Hasil Uji SEM Ag/TiO₂ FM

Perbesaran 3.000x

Perbesaran 5.000x

Perbesaran 10.000x

Perbesaran 15.000x

Lampiran 6. Hasil karakterisasi dengan UV-Vis DRS

UILABORATORIUM UJI KIMIADEPARTEMEN KIMIA-UKK LST,
FMIPAUNIVERSITAS INDONESIA

Gedung G Departemen Kimia, Gedung Multidisiplin It.7 Fakultas Matematika dan Ilmu Pengetahuan Alam Kampus UI Depok 16424 Tp. : +6221 78849006 Email : uichemlab@gmail.com

LAB UI - CHEM KIMIA UI

LABORATORY TEST RESULTS Nurfitasari Parameter : %R, Abs

Customer	: Irma Nurfitas	ari	Parameter	: %R, Abs	
Date Con	npleted: October 26th 20	21	Test Number	: 126-SPK-021	
Date Rec	eived : October 07 th 20	21	Sample Matrix	: Serbuk Oksida	
No.	Sample Name	Sample Code	Parameter	Method	
1	ZnO	071021-0673	%R, Abs	Spektrofotometer Uv-DRS	
2	Ag/TiO2	071021-0674	%R, Abs	Spektrofotometer Uv-DRS	
3	TiO2	071021-0675	%R, Abs	Spektrofotometer Uv-DRS	
4	Cu/ZnO	071021-0676	%R, Abs	Spektrofotometer Uv-DRS	
5	Co/ZnO	071021-0677	%R, Abs	Spektrofotometer Uv-DRS	
6	TiO2/ZnO	071021-0678	%R, Abs	Spektrofotometer Uv-DRS	
7	Graphite Oxide	071021-0679	%R, Abs	Spektrofotometer Uv-DRS	
L					

Catatan:

1.Hasil yang ditampilkan hanya berhubungan dengan sampel yang diuji

2. Laporan Pengujian tidak boleh digandakan tanpa persetujuan tertulis dari laboratorium

Depok, October 26th 2021

Lampiran 7. Data Penentuan Panjang Gelombang Maksimum Titan Kuning Hubungan antara absorbansi dan panjang gelombang titan kuning.

Panjang gelombang (nm)	Absorbansi
390	0,358
395	0,376
396	0,378
397	0,38
400	0,388
405	0,382
410	0,37
415	0,346

Kurva hubungan antara absorbansi dan panjang gelombang titan kuning

Konsentrasi (ppm)	Absorbansi	
0	0	
2	0,127	
4	0,258	
6	0,388	
8	0,482	
10	0,602	
12	0,698	

Lampiran 8. Data Absorbansi Kurva Standar Titan Kuning

Hubungan antara absorbansi dan konsentrasi titan kuning

Kurva standar titan kuning dengan spektrofotometer UV-Vis

Lampiran 9. Data Penentuan Panjang Gelombang Maksimum Fenol Merah

Panjang gelombang (nm) Absorbansi 420 0,416 421 0,418 422 0,42 423 0,422 0,428 426 0,420 431 432 0,419 434 0,416 436 0,414

Hubungan antara absorbansi dan panjang gelombang fenol merah.

Kurva hubungan antara absorbansi dan panjang gelombang fenol merah

Konsentrasi (ppm)	Absorbansi
0	0
2	0,117
4	0,215
6	0,328
8	0,426
10	0,528
12	0,628

Lampiran 10. Data Absorbansi Kurva Standar Fenol Merah

Hubungan antara absorbansi dan konsentrasi fenol merah

Kurva standar fenol merah dengan spektrofotometer UV-Vis

Penentuan bobot optimum fotodegradasi titan kuning oleh katalis ZnO, Cu/ZnO, TiO₂, dan Ag/TiO₂.

Bobot ZnO	Absorbansi	C _e (ppm)	C₀ (ppm)	%
(g)				Fotodegradasi
0,050	1,69	28,895	50	42,210
0,100	1,67	28,550	50	42,900
0,150	1,621	27,705	50	44,590
0,200	1,587	27,119	50	45,762
0,251	1,521	25,981	50	48,038
0,350	1,503	25,671	50	48,659
0,501	1,396	23,826	50	52,348
0,750	1,411	24,084	50	51,831
1,007	1,425	24,326	50	51,348

Lampiran 11. Data penentuan bobot optimum fotodegradasi titan kuning oleh katalis ZnO

Cara menghitung nilai % degradasi pada bobot 0,501 g

y = 0,058x + 0,014 $R^{2} = 0,998$ Konsentrasi awal (C_o) = 50 ppm Konsentrasi akhir (C_e) y = 1,396 y = ax + b $x = \frac{y - b}{a}$ $= \frac{1,396 - 0,014}{0,058}$

x = 23,826 ppm

Persentase Degradasi = $\frac{C_o - C_e}{C_o} \times 100\%$

$$=\frac{50 - 23,826}{50} \times 100\%$$
$$= 52,348\%.$$

Bobot	Absorbansi	C _e (ppm)	C₀ (ppm)	%
Cu/ZnO				Fotodegradasi
(g)				
0,050	1,154	19,655	50	60,690
0,100	0,76	12,862	50	74,276
0,151	0,49	8,207	50	83,586
0,201	0,38	6,310	50	87,379
0,251	0,288	4,724	50	90,552
0,350	0,321	5,293	50	89,414
0,501	0,38	6,310	50	87,379
0,751	0,407	6,776	50	86,448
1,007	0,4	6,655	50	86,690

Lampiran 12. Data penentuan bobot optimum fotodegradasi titan kuning oleh katalis Cu/ZnO

Cara menghitung nilai % degradasi pada bobot 0,251 g

y = 0,058x + 0,014 $R^2 = 0,998$ Konsentrasi awal (C_o) = 50 ppm

Konsentrasi akhir (C_e)

$$y = 0,288$$

$$y = ax + b$$

$$x = \frac{y - b}{a}$$

$$= \frac{0,288 - 0,014}{0,058}$$

x = 4,724 ppm

Persentase Degradasi = $\frac{C_o - C_e}{C_o} \times 100\%$

$$=\frac{50-4,724}{50}\times 100\%$$

= 90,552%.

Bobot	Absorbansi	FP	C _e (ppm)	C _o (ppm)	%
TiO ₂					Fotodegradasi
(g)					
0,050	0,217	10	37,172	50	25,655
0,100	0,213	10	36,483	50	27,034
0,150	1,989	-	34,052	50	31,897
0,200	1,945	-	33,293	50	33,414
0,258	1,893	-	32,397	50	35,207
0,350	1,782	-	30,483	50	39,034
0,504	1,752	-	29,966	50	40,069
0,750	1,775	-	30,362	50	39,276
1,002	1,767	-	30,224	50	39,552

Lampiran 13. Data penentuan bobot optimum fotodegradasi titan kuning oleh katalis TiO_{2.}

Cara menghitung nilai % degradasi pada bobot 0,504 g

y = 0,058x + 0,014 $R^2 = 0,998$

Konsentrasi awal (C_o) = 50 ppm

Konsentrasi akhir (Ce)

y = 1,752
y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{1,752 - 0,014}{0,058}$

x = 29,966 ppm

 $Persentase \ Degradasi = \frac{C_o - C_e}{C_o} \times 100\%$

$$=\frac{50-29,966}{50}\times 100\%$$

= 40,069 %.
Bobot	Absorbansi	C _e (ppm)	C₀ (ppm)	%
Ag/TiO ₂				Fotodegradasi
(g)				
0,050	1,587	27,121	50	45,759
0,101	1,243	21,190	50	57,621
0,150	0,752	12,724	50	74,552
0,200	0,498	8,345	50	83,310
0,256	0,344	5,690	50	88,621
0,350	0,381	6,328	50	87,345
0,504	0,51	8,552	50	82,897
0,750	0,53	8,897	50	82,207
1,001	0,54	9,069	50	81,862

Lampiran 14. Data penentuan bobot optimum fotodegradasi titan kuning oleh katalis Ag/TiO₂

Cara menghitung nilai % degradasi pada bobot 0,256 g

Nilai absorbansi pada bobot 0,256 g dimasukkan dalam persamaan regresi kurva standar

y = 0,058x + 0,014 R² = 0,998 Konsentrasi awal (C_o) = 50 ppm Konsentrasi akhir (C_e) y = 0,344 y = ax + b x = $\frac{y - b}{a}$ = $\frac{0,344 - 0,014}{0,058}$ x = 5,690 ppm

$$=\frac{50-5,690}{50}\times 100\%$$

= 88,621%.

Penentuan bobot optimum fotodegradasi fenol merah oleh katalis ZnO, Cu/ZnO, TiO₂, dan Ag/TiO₂.

Lampiran 15. Data penentuan bobot optimum fotodegradasi fenol merah oleh katalis ZnO

Bobot	Absorbansi	FP	C _e (ppm)	C₀ (ppm)	%
ZnO					Fotodegradasi
(g)					
0,050	0,212	10	40,543	50	18,914
0,100	1,997	-	38,182	50	23,635
0,15	1,895	-	36,225	50	27,551
0,201	1,87	-	35,745	50	28,511
0,253	1,861	-	35,572	50	28,856
0,351	1,74	-	33,250	50	33,501
0,501	1,646	-	31,445	50	37,109
0,750	1,681	-	32,117	50	35,766
1,041	1,714	-	32,750	50	34,499

Cara menghitung nilai % degradasi pada bobot 0,501 g

Nilai absorbansi pada bobot 0,501 g dimasukkan dalam persamaan regresi kurva standar

y = 0,0521x + 0,0077 $R^2 = 0,9994$

Konsentrasi awal (C_o) = 50 ppm

Konsentrasi akhir (Ce)

y = 1,646
y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{1,646 - 0,0077}{0,0521}$

x = 31,445 ppm

$$=\frac{50-31,445}{50}\times100\%$$

= 37,109%.

Bobot Cu/ZnO (g)	Absorbansi	C _e (ppm)	C₀ (ppm)	% Fotodegradasi
0,050	1,2	22,885	50	54,230
0,105	0,999	19,027	50	61,946
0,151	0,764	14,516	50	70,967
0,200	0,642	12,175	50	75,651
0,250	0,561	10,620	50	78,760
0,350	0,554	10,486	50	79,029
0,505	0,487	9,200	50	81,601
0,750	0,556	10,524	50	78,952
1,005	0,665	12,616	50	74,768

Lampiran 16. Data penentuan bobot optimum fotodegradasi fenol merah oleh katalis Cu/ZnO

Cara menghitung nilai % degradasi pada bobot 0,505 g

Nilai absorbansi pada bobot 0,505 g dimasukkan dalam persamaan regresi kurva standar

y = 0,0521x + 0,0077 R² = 0,9994 Konsentrasi awal (C_o) = 50 ppm Konsentrasi akhir (C_e) y = 0,487 y = ax + b x = $\frac{y - b}{a}$ = $\frac{0,487 - 0,0077}{0,0521}$

x = 9,200 ppm.

$$=\frac{50 - 9,200}{50} \times 100\%$$

= 81,601 %.

Bobot	Absorbansi	FP	C _e (ppm)	C₀ (ppm)	%
TiO ₂					Fotodegradasi
(g)					
0,051	0,205	10	39,200	50	21,601
0,101	1,862	-	35,591	50	28,818
0,150	1,784	-	34,094	50	31,812
0,200	1,72	-	32,866	50	34,269
0,250	1,711	-	32,693	50	34,614
0,350	1,68	-	32,098	50	35,804
0,502	1,672	-	31,944	50	36,111
0,750	1,7	-	32,482	50	35,036
1,005	1,724	-	32,942	50	34,115

Lampiran 17. Data penentuan bobot optimum fotodegradasi fenol merah oleh katalis TiO₂

Cara menghitung nilai % degradasi misal pada bobot 0,502 g

Nilai absorbansi pada bobot 0,502 g dimasukkan dalam persamaan regresi kurva standar

y = 0,0521x + 0,0077 R² = 0,9994 Konsentrasi awal (C_o) = 50 ppm Konsentrasi akhir (C_e) y = 1,672 x = $\frac{y - b}{a}$

$$=\frac{1,672-0,0077}{0,0521}$$

x = 31,944 ppm

$$=\frac{50-31,944}{50}\times 100\%$$
$$= 36,111\%$$

Bobot Ag/TiO₂	Absorbansi	C _e (ppm)	C₀ (ppm)	% Fotodegradasi
(9)	4.40			
0,050	1,42	27,107	50	45,785
0,100	1,24	23,653	50	52,695
0,150	1,012	19,276	50	61,447
0,200	0,733	13,921	50	72,157
0,250	0,667	12,655	50	74,691
0,350	0,69	13,096	50	73,808
0,500	0,686	13,019	50	73,962
0,750	0,727	13,806	50	72,388
1,003	0,742	14,094	50	71,812

Lampiran 18. Data penentuan bobot optimum fotodegradasi fenol merah oleh katalis Ag/TiO₂

Cara menghitung nilai % degradasi pada bobot 0,250 g

Nilai absorbansi pada bobot 0,250 g dimasukkan dalam persamaan regresi kurva standar

y = 0,0521x + 0,0077 R² = 0,9994 Konsentrasi awal (C_o) = 50 ppm Konsentrasi akhir (C_e) y = 0,667 y = ax + b x = $\frac{y - b}{z}$

$$c = \frac{a}{a} = \frac{0,667 - 0,0077}{0,0521}$$

x = 12,655 ppm

$$=\frac{50-12,655}{50}\times 100\%$$
$$= 74,691\%$$

Penentuan waktu optimum fotodegradasi titan kuning oleh katalis ZnO, Cu/ZnO, TiO₂, dan Ag/TiO₂.

Lampiran 19. Data penentuan waktu optimum fotodegrdasi titan kuning oleh katalis ZnO

Waktu (menit)	Absorbansi	FP	C _e (ppm)	C₀ (ppm)	% Fotodegradasi
5	0,239	10	40,966	50	18,069
10	0,224	10	38,379	50	23,241
20	0,210	10	37,690	50	27,966
30	1,987	-	37,345	50	31,966
45	1,846	-	31,586	50	36,828
60	1,545	-	26,397	50	47,207
90	1,31	-	22,345	50	55,310
120	1,466	-	25,034	50	49,931
150	1,535	-	26,224	50	47,552
210	1,602	-	27,379	50	45,241

Cara menghitung nilai % degradasi pada waktu 90 menit

Nilai absorbansi pada waktu 90 menit dimasukkan dalam persamaan regresi kurva standar

y = 0.058x + 0.014

 $R^2 = 0,998$

Konsentrasi awal (C_o) = 50 ppm

Konsentrasi akhir (C_e)

$$y = 1,31$$

$$y = ax + b$$

$$x = \frac{y - b}{a}$$

$$= \frac{1,31 - 0,014}{0,058}$$

x = 22,345 ppm

$$=\frac{50 - 22,345}{50} \times 100\%$$
$$= 55,310\%$$

Waktu	Absorbansi	C _e (ppm)	C _o (ppm)	%
(menit)				Fotodegradasi
5	1,04	17,690	50	64,621
10	1	17,000	50	66,000
20	0,807	13,672	50	72,655
30	0,62	10,448	50	79,103
45	0,43	7,172	50	85,655
60	0,287	4,707	50	90,586
90	0,122	1,862	50	96,276
120	0,124	2,241	50	95,517
150	0,15	2,345	50	95,310
210	0,152	2,379	50	95,241

Lampiran 20. Data penentuan waktu optimum fotodegradasi titan kuning oleh katalis Cu/ZnO

Cara menghitung nilai % degradasi pada waktu 90 menit

Nilai absorbansi pada waktu 90 menit dimasukkan dalam persamaan regresi kurva standar

y = 0,058x + 0,014

 $R^2 = 0,998$

Konsentrasi awal (Co) = 50 ppm

Konsentrasi akhir (C_e)

$$y = 0,122$$

$$y = ax + b$$

$$x = \frac{y - b}{a}$$

$$= \frac{0,122 - 0,014}{0,058}$$

x = 1,862 ppm

$$=\frac{50 - 1,862}{50}$$
$$= 96,276 \%$$

Waktu (menit)	Absorbansi	FP	C _e (ppm)	C₀ (ppm)	% Fotodegradasi
5	0,241	10	41,310	50	17,379
10	0,231	10	39,586	50	20,828
20	0,219	10	37,517	50	24,966
30	1,994	10	34,138	50	31,724
45	1,852	-	31,690	50	36,621
60	1,782	-	30,483	50	39,034
90	1,68	-	28,724	50	42,552
120	1,597	-	27,293	50	45,414
150	1,657	-	28,328	50	43,345
210	1,732	-	29,621	50	40,759

Lampiran 21. Data penentuan waktu optimum fotodegradasi titan kuning oleh katalis TiO₂

Cara menghitung nilai % degradasi pada waktu 120 menit

Nilai absorbansi pada waktu 120 menit dimasukkan dalam persamaan regresi kurva standar

y = 0,058x + 0,014

 $R^2 = 0,998$

Konsentrasi awal (C_o) = 50 ppm

Konsentrasi akhir (C_e)

y = 1,597
y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{1,597 - 0,014}{0,058}$

x = 27,293 ppm

$$=\frac{50-27,293}{50}\times100\%$$
$$=45.414\%.$$

Waktu	Absorbansi	C _e (ppm)	C₀ (ppm)	%
(menit)				Fotodegradasi
5	1,282	21,862	50	56,276
10	1,13	19,241	50	61,517
20	0,963	16,362	50	67,276
30	0,834	14,138	50	71,724
45	0,562	9,448	50	81,103
60	0,311	5,121	50	89,759
90	0,335	5,534	50	88,931
120	0,344	5,690	50	88,621
150	0,37	6,138	50	87,724
210	0,394	6,552	50	86,897

Lampiran 22. Data penentuan waktu optimum fotodegrdasi titan kuning oleh katalis Ag/TiO₂

Cara menghitung nilai % degradasi pada waktu 60 menit

Nilai absorbansi pada waktu 60 menit dimasukkan dalam persamaan regresi kurva standar

y = 0,058x + 0,014

 $R^2 = 0,998$

Konsentrasi awal (C_o) = 50 ppm

Konsentrasi akhir (C_e)

y = 0,311
y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{0,311 - 0,014}{0,058}$

x = 5,121 ppm

$$=\frac{50-5,121}{50}\times100\%$$

= 89,759 %.

Waktu	Absorbansi	FP	C _e (ppm)	C₀ (ppm)	%
(menit)					Fotodegradasi
5	0,291	10	49,931	50	0,138
10	0,287	10	49,241	50	1,517
20	0,28	10	48,034	50	3,931
30	0,278	10	47,690	50	4,621
45	0,275	10	47,172	50	5,655
60	0,271	10	46,483	50	7,034
90	0,268	10	45,966	50	8,069
120	0,265	10	45,448	50	9,103
150	0,262	10	44,931	50	10,138
210	0,256	10	43,897	50	12,207

Data penentuan waktu optimum fotodegrdasi titan kuning tanpa katalis

Cara menghitung nilai % degradasi pada waktu 210 menit

Nilai absorbansi pada waktu 210 menit dimasukkan dalam persamaan regresi kurva standar

y = 0.058x + 0.014

 $R^2 = 0,998$

Konsentrasi awal (Co) = 50 ppm

Konsentrasi akhir (Ce)

$$y = 0,256$$

$$y = ax + b$$

$$x = \frac{y - b}{a}$$

$$= \frac{0,256 - 0,014}{0,058}$$

x = 43,897 ppm

$$=\frac{50-43,897}{50}\times 100\%$$
$$= 12,207\%.$$

Waktu	Absorbansi	FP	C _e (ppm)	C _o (ppm)	%
(menit)					Fotodegradasi
5	0,226	10	43,230	50	13,539
10	0,215	10	41,119	50	17,762
20	1,941	-	37,107	50	25,785
30	1,704	-	32,559	50	34,883
45	1,664	-	31,791	50	36,418
60	1,673	-	31,964	50	36,073
90	1,556	-	29,718	50	40,564
120	1,414	-	26,992	50	46,015
150	1,418	-	27,069	50	45,862
210	1,438	-	27,453	50	45,094

Lampiran 23. Data penentuan waktu optimum fotodegradasi fenol merah oleh katalis ZnO

Cara menghitung nilai % degradasi pada waktu 120 menit

Nilai absorbansi pada waktu 120 menit dimasukkan dalam persamaan regresi kurva standar

y = 0.0521x + 0.0077

 $R^2 = 0,9994$

Konsentrasi awal (Co) = 50 ppm

Konsentrasi akhir (C_e)

y = 1,414
y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{1,414 - 0,0077}{0,0521}$

x = 26,992 ppm

$$=\frac{50-26,992}{50}\times100\%$$
$$=46,015\%$$

Waktu	Absorbansi	C _e (ppm)	C₀ (ppm)	%
(menit)				Fotodegradasi
5	1,21	23,115	50	53,770
10	1,2	22,885	50	54,230
20	1,142	21,772	50	56,457
30	1,014	19,315	50	61,370
45	0,724	13,749	50	72,503
60	0,52	9,833	50	80,334
90	0,355	6,666	50	86,668
120	0,241	4,478	50	91,044
150	0,257	4,785	50	90,430
210	0,3	5,610	50	88,779

Lampiran 24. Data penentuan waktu optimum fotodegradasi fenol merah oleh katalis Cu/ZnO

Cara menghitung nilai % degradasi pada waktu 120 menit

Nilai absorbansi pada waktu 120 menit dimasukkan dalam persamaan regresi kurva standar

y = 0,0521x + 0,0077

 $R^2 = 0,9994$

Konsentrasi awal (C_o) = 50 ppm

Konsentrasi akhir (C_e)

y = 0,241
y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{0,241 - 0,0077}{0,0521}$

$$=\frac{50-4,478}{50}\times 100\%$$

= 91,04%

Waktu	Absorbansi	FP	C _e (ppm)	C₀ (ppm)	%
(menit)					Fotodegradasi
5	0,23	10	43,998	50	12,004
10	0,213	10	40,735	50	18,530
20	1,992	-	38,086	50	23,827
30	1,856	-	35,476	50	29,048
45	1,77	-	33,825	50	32,349
60	1,76	-	33,633	50	32,733
90	1,74	-	33,250	50	33,501
120	1,73	-	33,058	50	33,885
150	1,67	-	31,906	50	36,188
210	1,712	-	32,712	50	34,576

Lampiran 25. Data penentuan waktu optimum fotodegrdasi fenol merah oleh katalis TiO₂

Cara menghitung nilai % degradasi pada waktu 150 menit

Nilai absorbansi pada waktu 150 menit dimasukkan dalam persamaan regresi kurva standar

y = 0,0521x + 0,0077 R² = 0,9994 Konsentrasi awal (C_o) = 50 ppm Konsentrasi akhir (C_e) y = 1,67 y = ax + b x = $\frac{y - b}{a}$ = $\frac{1,67 - 0,0077}{0,0521}$ x = 31,906 ppm. Persentase Degradasi = $\frac{C_o - C_e}{C_o} \times 100\%$

$$=\frac{50-31,906}{50}\times 100\%$$

= 36,188 %

Waktu (menit)	Absorbansi	C _e (ppm)	C _o (ppm)	% Fotodegradasi
5	1,332	25,071	50	49,858
10	1,252	23,536	50	52,929
20	1,132	21,232	50	57,536
30	0,992	18,545	50	62,910
45	0,821	15,263	50	69,474
60	0,643	11,846	50	76,307
90	0,397	7,125	50	85,750
120	0,431	7,777	50	84,445
150	0,422	7,605	50	84,791
210	0,451	8,161	50	83,678

Lampiran 26. Data penentuan waktu optimum fotodegradasi fenol merah oleh katalis Ag/TiO₂

Cara menghitung nilai % degradasi pada waktu 90 menit

Nilai absorbansi pada waktu 90 menit dimasukkan dalam persamaan regresi kurva standar

y = 0,0521x + 0,0077

 $R^2 = 0,9994$

Konsentrasi awal (Co) = 50 ppm

Konsentrasi akhir (C_e)

y = 0,397
y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{0,397 - 0,0077}{0,0521}$

x = 7,125 ppm

$$=\frac{50-7,125}{50}\times100\%$$
$$= 85,750\%.$$

Waktu	Absorbansi	FP	C _e (ppm)	C₀ (ppm)	%
(menit)					Fotodegradasi
5	0,26	10	49,756	50	0,488
10	0,252	10	48,221	50	3,559
20	0,25	10	47,837	50	4,326
30	0,247	10	47,261	50	5,478
45	0,241	10	46,109	50	7,781
60	0,237	10	45,342	50	9,317
90	0,234	10	44,766	50	10,468
120	0,233	10	44,574	50	10,852
150	0,23	10	43,998	50	12,004
210	0,228	10	43,614	50	12,772

Data penentuan waktu optimum fotodegradasi fenol merah tanpa penambahan katalis

Cara menghitung nilai % degradasi pada waktu 210 menit

Nilai absorbansi pada waktu 210 menit dimasukkan dalam persamaan regresi kurva standar

y = 0,0521x + 0,0077

 $R^2 = 0,9994$

Konsentrasi awal (C_o) = 50 ppm

Konsentrasi akhir (C_e)

y = 2,28
y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{2,28 - 0,0077}{0,0521}$

x = 43,614 ppm

$$=\frac{50-43,614}{50}\times 100\%$$
$$= 12,772\%.$$

Penentuan kapasitas fotodegradasi titan kuning oleh katalis ZnO, Cu/ZnO, TiO₂, dan Ag/TiO₂

Absorbansi	FP	C _e (ppm)	C₀ (ppm)	% Fotodegradasi
1,81	-	30,966	65	52,361
0,213	10	36,483	75	51,356
0,275	10	47,172	100	52,828
0,355	10	60,966	125	51,228
0,438	10	75,276	150	49,816
0,611	10	105,103	200	47,448
0,813	10	139,931	250	44,028
0,98	10	168,724	300	43,759

Lampiran 27. Data penentuan kapasitas fotodegradasi titan kuning oleh katalis ZnO

Cara menghitung nilai % degradasi pada konsentrasi 100 ppm

Nilai absorbansi pada konsentrasi 100 ppm dimasukkan dalam persamaan regresi kurva standar

y = 0.058x + 0.014

 $R^2 = 0,998$

Konsentrasi awal (C_o) = 100 ppm

Konsentrasi akhir (C_e)

$$y = 2,75$$

$$y = ax + b$$

$$x = \frac{y - b}{a}$$

$$= \frac{2,75 - 0,014}{0,058}$$

x = 47,172 ppm.

$$=\frac{100-47,172}{100}$$
$$= 52,828\%.$$

Absorbansi	C _e (ppm)	C _o (ppm)	% Fotodegradasi
0,204	3,276	65	94,960
0,218	3,517	75	95,310
0,282	4,621	100	95,379
0,36	5,966	125	95,228
0,39	6,483	150	95,678
0,87	14,759	200	92,621
1,39	23,724	250	90,510
1,94	33,207	300	88,931

Lampiran 28. Data penentuan kapasitas fotodegrdasi titan kuning oleh katalis Cu/ZnO.

Cara menghitung nilai % degradasi pada konsentrasi 150 ppm

Nilai absorbansi pada konsentrasi 150 ppm dimasukkan dalam persamaan regresi kurva standar

y = 0.058x + 0.014

 $R^2 = 0,998$

Konsentrasi awal (Co) = 150 ppm

Konsentrasi akhir (C_e)

$$y = 0,39$$

$$y = ax + b$$

$$x = \frac{y - b}{a}$$

$$= \frac{0,39 - 0,014}{0,058}$$

x = 6,483 ppm

$$=\frac{150-6,483}{150}$$
$$= 95,678\%.$$

Absorbansi	FP	C _e (ppm)	C _o (ppm)	% Fotodegradasi
0,215	10	36,828	65	43,342
0,248	10	42,517	75	43,310
0,323	10	55,448	100	44,552
0,408	10	70,103	125	43,917
0,49	10	84,241	150	43,839
0,668	10	114,931	200	42,534
0,842	10	144,931	250	42,028
1,01	10	174,241	300	41,920

Lampiran 29. Data penentuan kapasitas fotodegrdasi titan kuning oleh katalis TiO₂

Cara menghitung nilai % degradasi pada konsentrasi 100 ppm

Nilai absorbansi pada konsentrasi 100 ppm dimasukkan dalam persamaan regresi kurva standar

y = 0.058x + 0.014

 $R^2 = 0,998$

Konsentrasi awal (Co) = 100 ppm

Konsentrasi akhir (C_e)

$$y = 3,23$$

$$y = ax + b$$

$$x = \frac{y - b}{a}$$

$$= \frac{3,23 - 0,014}{0,058}$$

x = 55,448 ppm

$$=\frac{100-55,448}{100}$$
$$= 44,552\%$$

Absorbasi	FP	C _e (ppm)	C₀ (ppm)	% Fotodegradasi
0,438	-	7,310	65	88,753
0,5	-	8,379	75	88,828
0,657	-	11,086	100	88,914
0,808	-	13,690	125	89,048
1,1	-	18,724	150	87,517
1,38	-	23,552	200	88,224
1,761	-	30,121	250	87,952
0,221	10	37,862	300	87,379

Lampiran 30. Data penentuan kapasitas fotodegradasi titan kuning oleh katalis Ag/TiO₂

Cara menghitung nilai % degradasi pada konsentrasi 125 ppm

Nilai absorbansi pada konsentrasi 125 ppm dimasukkan dalam persamaan regresi kurva standar

y = 0,058x + 0,014

 $R^2 = 0,998$

Konsentrasi awal (Co) = 125 ppm

Konsentrasi akhir (C_e)

$$y = 0,808$$

y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{0,808 - 0,014}{0,058}$

x = 13,690 ppm

$$=\frac{125-13,690}{125}$$
$$= 89,048\%$$

Absorbansi	FP	C _e (ppm)	C₀ (ppm)	%
				Fotodegradasi
0,34	10	58,379	65	10,186
0,393	10	67,517	75	9,977
0,524	10	90,103	100	9,897
0,664	10	114,241	125	8,607
0,803	10	138,207	150	7,862
1,076	10	185,276	200	7,362
1,349	10	232,345	250	7,062
1,628	10	280,448	300	6,517

Data penentuan konsentrasi optimum fotodegradasi titan kuning tanpa penambahan katalis

Cara menghitung nilai % degradasi pada konsentrasi 65 ppm

Nilai absorbansi pada konsentrasi 65 ppm dimasukkan dalam persamaan regresi kurva standar

y = 0.058x + 0.014

 $R^2 = 0,998$

Konsentrasi awal (Co) = 65 ppm

Konsentrasi akhir (C_e)

$$y = 3,4$$

$$y = ax + b$$

$$x = \frac{y - b}{a}$$

$$= \frac{3,4 - 0,014}{a}$$

x = 58,379 ppm

$$= \frac{65 - 58,379}{65} \times 100\%$$
$$= 10,186\%.$$

Absorbansi	FP	C _e (ppm)	C₀ (ppm)	% Fotodegradasi
1,86	-	35,553	60	40,745
0,219	10	41,887	70	40,162
0,246	10	47,069	80	41,164
0,284	10	54,363	90	39,597
0,318	10	60,889	100	39,111
0,36	10	68,950	110	37,318
0,404	10	77,395	120	35,504
0,526	10	100,812	150	32,792

Lampiran 31. Data penentuan kapasitas fotodegradasi fenol merah oleh katalis ZnO

Cara menghitung nilai % degradasi pada konsentrasi 80 ppm

Nilai absorbansi pada konsentrasi 80 ppm dimasukkan dalam persamaan regresi kurva standar

y = 0,0521x + 0,0077

 $R^2 = 0,9994$

Konsentrasi awal (Co) = 80 ppm

Konsentrasi akhir (Ce)

y = 2,46
y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{2,46 - 0,0077}{0,0521}$

x = 47,069 ppm

$$=\frac{80-47,069}{80}\times100\%$$

= 41,164 %

Absorbansi	C _e (ppm)	C _o (ppm)	% Fotodegradasi
0,34	6,378	60	89,370
0,41	7,722	70	88,969
0,42	7,914	80	90,108
0,552	10,447	90	88,392
0,651	12,347	100	87,653
0,82	15,591	110	85,826
0,954	18,163	120	84,864
1,982	37,894	150	74,737

Lampiran 32. Data penentuan kapasitas fotodegradasi fenol merah oleh katalis Cu/ZnO

Cara menghitung nilai % degradasi pada konsentrasi 80 ppm

Nilai absorbansi pada konsentrasi 80 ppm dimasukkan dalam persamaan regresi kurva standar

y = 0,0521x + 0,0077

 $R^2 = 0,9994$

Konsentrasi awal (Co) = 80 ppm

Konsentrasi akhir (Ce)

y = 0,42
y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{0,42 - 0,0077}{0,0521}$

x = 7,914 ppm

$$=\frac{80-7,914}{80}\times 100\%$$

= 90,108 %

Absorbansi	FP	C _e (ppm)	C₀ (ppm)	%
				Fotodegradasi
0,283	10	54,171	60	9,715
0,334	10	63,960	70	8,629
0,387	10	74,132	80	7,334
0,441	10	84,497	90	6,114
0,493	10	94,478	100	5,522
0,547	10	104,843	110	4,689
0,601	10	115,207	120	3,994
0,757	10	145,150	150	3,234

Data penentuan konsentrasi optimum fotodegradasi fenol merah tanpa penambahan katalis

Cara menghitung nilai % degradasi pada konsentrasi 60 ppm

Nilai absorbansi pada konsentrasi 60 ppm dimasukkan dalam persamaan regresi kurva standar

y = 0,0521x + 0,0077

 $R^2 = 0,9994$

Konsentrasi awal (C_o) = 60 ppm

Konsentrasi akhir (C_e)

y = 2,83
y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{2,83 - 0,0077}{0,0521}$

x = 54,171 ppm

$$=\frac{60-54,171}{60}\times100\%$$

= 9,715 %.

Absorbansi	FP	C _e (ppm)	C₀ (ppm)	% Fotodegradasi
0,218	10	41,695	60	30,509
0,26	10	49,756	70	28,920
0,287	10	54,939	80	31,327
0,34	10	65,111	90	27,654
0,383	10	73,365	100	26,635
0,434	10	83,154	110	24,406
0,498	10	95,438	120	20,469
0,642	10	123,077	150	17,949

Lampiran 33. Data penentuan kapasitas fotodegradasi fenol merah oleh katalis TiO₂

Cara menghitung nilai % degradasi pada konsentrasi 80 ppm

Nilai absorbansi pada konsentrasi 80 ppm dimasukkan dalam persamaan regresi kurva standar

y = 0.0521x + 0.0077

 $R^2 = 0,9994$

Konsentrasi awal (C_o) = 80 ppm

Konsentrasi akhir (C_e)

y = 2,87
y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{2,87 - 0,0077}{0,0521}$

x = 54,939 ppm

$$=\frac{80-54,939}{80}\times100\%$$
$$=31,327\%$$

Absorbansi	FP	C _e (ppm)	C₀ (ppm)	% Fotodegradasi		
0,58	-	10,985	60	81,692		
0,68	-	12,904	70	81,566		
0,743	-	14,113	80	82,358		
0,932	-	17,741	90	80,288		
1,13	-	21,541	100	78,459		
1,32	-	25,188	110	77,102		
1,52	-	29,027	120	75,811		
0,234	10	44,766	150	70,156		

Lampiran 34. Data penentuan kapasitas fotodegradasi fenol merah oleh katalis Ag/TiO₂

Cara menghitung nilai % degradasi, misal pada konsentrasi 80 ppm

Nilai absorbansi pada konsentrasi 80 ppm dimasukkan dalam persamaan regresi kurva standar

y = 0,0521x + 0,0077

 $R^2 = 0,9994$

Konsentrasi awal (Co) = 80 ppm

Konsentrasi akhir (C_e)

y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{0,743 - 0,0077}{0,0521}$

x = 14,113 ppm

$$=\frac{80-14,113}{80}\times100\%$$

Penentuan % efektivitas campuran zat warna TK dan FM

Lampiran 35. Data penentuan % efektivitas campuran zat warna TK dan FM

Katalis	Abso	orbansi	C₀ (ppm)		C _e (ppm)		% Efektivitas	
	ΤK	FM	ТК	FM	ТК	FM	ТК	FM
ZnO	1,23	1,480	50	50	20,966	28,2591	58,069	43,4818
Cu/ZnO	0,136	0,247	50	50	2,103	4,5931	95,793	90,8138
TiO ₂	1,437	1,75	50	50	24,534	33,4415	50,931	33,1171
Ag/TiO ₂	0,23	0,42	50	50	3,724	7,9136	92,552	84,1727
Tanpa katalis	0,24 (FP 10)	0,236 (FP 10)	50	50	41,138	45,1497	17,724	9,7006

Cara menghitung nilai % efektivitas pada Cu/ZnO TK Nilai absorbansi pada Cu/ZnO TK dimasukkan dalam persamaan regresi kurva standar y = 0.058x + 0.014

 $R^2 = 0,998$

Konsentrasi awal (C_o) = 50 ppm

Konsentrasi akhir (C_e)

y = 0,136
y = ax + b
x =
$$\frac{y - b}{a}$$

= $\frac{0,136 - 0,014}{0,058}$

Efektivitas =
$$\frac{C_0 - C_e}{C_0} \times 100\%$$

$$=\frac{50-2,103}{50} \ge 100\%$$

= 95,793%