DAFTAR PUSTAKA

- Abukhadra, M. R., & Shaban, M. 2019. Recycling of different solid wastes in synthesis of high-order mesoporous silica as adsorbent for safranin dye. *International Journal of Environmental Science and Technology*, *16*(11), 7573-7582.
- Abu-Zied B.M., Alam, M.M., Asiri, A.M., Schwieger, W. and Rahman, M.M., 2019. Fabrication of 1,2-dichlorobenzene sensor based on mesoporous MCM-41 material, *Colloids Surfaces A Physicochem. Eng. Asp.* 562, 161–169.
- Adeyi A.A., Jamil S.N.A.M., Abdullah L.C. and Choong T.S.Y., 2019. Adsorption of Malachite Green Dye from Liquid Phase Using Hydrophilic Thiourea-Modified Poly(acrylonitrile-co-acrylic acid): Kinetic and Isotherm Studies. *Journal of Chemistry*. 1-14.
- Afiqah N., Mohamad, H., Biaw, L., Lim, L. and Usman, A., 2018. Enhancing adsorption of malachite green dye using base-modified Artocarpus odoratissimus leaves as adsorbents. *Environmental Technology & Innovation*. 12-20.
- Algarra M., Jiménez, M.V., Rodríguez-Castellón, E., Jiménez-López, A. and JiménezJiménez, J., 2005. Heavy metals removal from electroplating wastewater by a minopropyl Si MCM-41. *Chemosphere*. 59, 779–786.
- Al-Ghouti, A.M. and Da'ana A.D., 2020. Guidelines for the use and interpretation of adsorption isotherm models. *Journal of Hazardous Materials.* 393, 1-22.
- Al-Ghouti, M.A. and Razavi, M.M., 2020. Brackish water desalination using Prosopis juliflora. *Environ. Technol. Innov.* 17, 1-12.
- Ali I., Alharbi, O.M.L., Alothman, Z.A. and Alwarthan, A., 2018. Colloids and Surfaces B: Biointerfaces Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water. *Colloids Surfaces B Biointerfaces*. 171, 606–613.
- Ali M.A.L., Farhood S.A. and Ali, F.F., 2017. Technique of Batch Adsorption for the Elimination of (Malachite Green) Dye from Industrial Waste Water by Exploitation Walnut Shells as Sorbent. *Indones. Journal Chemical* 17, 218-211.
- Allen, S.J., Mckay, G. and Porter, J.F., 2004. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. *Journal Colloid Interface Sci.* 280, 322–333.

- Amuguni H., Mari, J. and Mwanza, P., 2019. Brewers' spent grain in adsorption of aqueous Congo Red and malachite Green dyes : Batch and continuous flow systems. *Journal of Hazardous Materials*. 380, 1-10
- Amutha, K., Annaporani G. and Sudhapriya, 2020. Dyeing Of Textile With Natural Dyes Extraced From Termanalia Arjuda and Thespesia Populna Friuts. *Journal Industrial Crpos & Products* 148, 273-285.
- Anbia, M. and Ghaffari, A., 2011. Removal of Malachite Green from Dye Wastewater Using Mesoporous Carbon Adsorbent. *Journal Chemical.* 8, S67-S76.
- Arellano U., Wang, J.A., Chen, L.F., Asomoza, M., Guzmán, A., Solís, S., Estrella, A., Cipagauta, S. and Noreña, L.E., 2018. Transition metal oxides dispersed on Ti-MCM-41 hybrid core-shell catalysts for the photocatalytic degradation of Congo red colorant. *Catalysis Today*. 73, 1-11.
- Arnata W.I., Suprihatin, Fahma F., Richana N., and Sunarti C.T., 2019. Adsorption Of Anionic Congo Red Dye By Using Cellulose From Sago Frond. *Poll Res.* 38, 557-567.
- Arora S., 2014. It's Impact on Environment and its Treatment. *Journal of Bioremediation & Biodegradation*. 05, 1-8.
- Asip F., Mardhiah, R. and Husna, 2008. Uji Efektifitas Cangkang Telur Dalam Mengadsorbsilon Fe Dengan Proses Batch. *Jurnal. Teknik Kimia*. 2, 22-26.
- Ayawei N., Ebelegi N.A. and Wankasi D., 2017. Modelling and Interpretation of Adsorption Isotherms. *Journal of Chemistry*. 32, 1-11.
- Bandyopadhyay M., 2004. Synthesis of Mesoporous MCM-48 with Nanodispersed Metal and Metal Oxide Particles Inside the Pore System. *Dissertation*. Ruhr-Universitat Bochum. Germany.
- Basumatary A.K., Ghoshal A.K. and Pugazhenthi G., 2016. Performance assessment of MCM48 ceramic composite membrane by separation of AICI₃ from aqueous solution. *Ecotoxicol. Environ.* 134, 398–402.
- Beck J.S., Vartuli J.C., Roth W.J., Leonowics M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., Sheppard E.W., McCullen S.B., Higgins J.B. and Schlenker J.L., 1992. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. *Journal Chemical.* 114, 10834-10843.
- Begheri R., Ghaedi M., Asfaram A., Alipanahpour Dil E. and Javadian H., 2019a. RSM-CCD design of malachite green adsorption onto

activated carbon with multimodal pore size distribution prepared from Amygdalus scoparia: Kinetic and isotherm studies. *Polyhedron.* 171, 464-472.

- Begheri, S., Amini, M.M., Behbahani, M. and Rabiee, 2019b. Low cost thiolfunctionalized mesoporous silica, KIT-6-SH, as a useful adsorbent for cadmium ions removal: A study on the adsorption isotherms and kinetics of KIT-6-SH. *Journal Microchemical*. 145, 460-469.
- Belpaire C., Reyns T., Geeraerts C., and Van Loco J., 2015. Toxic textile dyes accumulate in wild European eel Anguilla anguilla. *Chemosphere*. 138, 784 -791.
- Benkhaya S.M rabet S. and El Harfi A., 2020. *Inorganic Chemistry Communications* 115, 1-11.
- Berradi M., Hsissou, R., Khudhair, M., Assouag, M., Cherkaoui, O.El.A. and El, A., 2019. Heliyon Textile finishing dyes and their impact on aquatic environs. *5*, 1-12.
- Bessaha, F., Mahrez, N., Marouf-Khelifa, K., Çoruh, A., & Khelifa, A. 2019. Removal of Congo red by thermally and chemically modified halloysite: equilibrium, FTIR spectroscopy, and mechanism studies. *International Journal of Environmental Science and Technology*, 16(8), 4253-4260.
- Birhanli, A. and Ozmen, M., 2005. Evaluation of the Toxicity and Teratogenity of Six Commercial Textile Dyes Using the Frog Embryo Teratogenesis Assay -Xenopus. *Drug* and *Chemical Toxicology*. 28, 51-65.
- Brezoiu A.M., Deaconu, M., Nicu, I., Vasile, E., Mitran, R.A., Matei, C. and Berger, D., 2019. Heteroatom modified MCM-41-silica carriers for Lomefloxacin delivery systems. *Microporous Mesoporous Mater*. 275, 214–222.
- Burakova I.V., Burakov A.E., Tkachev A.G., Troshkina I.D., Veselova O.A., Babkin A.V., Aung M.W. and Ali, I., 2018. Kinetics of the adsorption of scandium and cerium ions in sulfuric acid solutions on a nanomodified activated carbon. *Journal of Molecular Liquids*. 253, 277-283.
- Cakiryilmaz N., Arbag, H., Oktar, N., Dogu, G. and Dogu, T., 2018. Catalytic performances of Ni and Cu impregnated MCM-41 and Zr-MCM-41 for hydrogen production through steam reforming of acetic acid. *Journal Catalis*. 323, 191–199.

- Chanzu H. A., Onyari J. M. and Shiundu P. M., 2019. Brewers' spent grain in adsorption of aqueous Congo Red and malachite Green dyes: Batch and continuous flow systems. *Journal Hazard Mater*, 380,1-1.
- Chatterjee S., Min W.S., Lee b., Seung H. dan Woo a., 2010. Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes. *Bioresource Technology*. 101, 1800–1806.
- Chen X., Jiang X., Yin, C., Zhang B. and Zhang Q., 2019. Facile fabrication of hierarchical porous ZIF-8 for enhanced adsorption of antibiotics. *Journal Hazard. Mater.* 367, 194–204.
- Cheng Z., Yang B., Chen Q., Ji, W. and Shen Z., 2018. Characteristics and difference of oxidation and coagulation mechanisms for the removal of organic compounds by quantum parameter analysis. *Chemical Engineering*. 332, 351–360.
- Cheng Z., Zhang L., Guo. X., Jiang, X. and Li, T., 2015. Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant. Process optimization. kinetics and equilibrium. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 137, 1126-1143.
- Choudhary M., Kumar R. and Neogi S., 2020. Activated biochar derived from *Opuntia ficus-indica* for the efficient adsorption of malachite green dye, Cu⁺² and Ni⁺² from water. *Journal Hazard Mater.* 392,1-8.
- Costa J.A.S., de-Jesus R.A. da-Silva, C.M.P. and Romao, L.P.C., 2017. Efficient adsorption of a mixture of polycyclic aromatic hydrocarbons (PAHs) by Si–MCM–41 mesoporous molecular sieve. *Powder Technol.* 308, 434–441.
- Costa J.A.S., de-Jesus R.A., Santos, D.O., Mano, J.F., Romao, L.P.C. and Paranhos C.M., 2020. Recent progresses in the adsorption of organic, inorganic, and gas compounds by MCM-41-based mesoporous materials. *Microporous* and *Mesoporous Materials*. 291, 1-12.
- Daneshvar, E., Vazirzadeh, A., Niazi, A., Kousha, M., Naushad, M., dan Bhatnagar, A. 2017. Desorption of methylene blue dye from brown macroalga: effects of operating parameters, isotherm study and kinetic modeling. *Journal of Cleaner Production*, *152*, 443-453.
- Demirbas A., 2008. Heavy metal adsorption onto agro-based waste materials: a review. *Journal of Hazardous Materials*. 157, 220–229.

- Dhaif-Allah M.A.H., Taqui S.N., Syed, U.T. and Syed, A.A., 2020. Kinetic and isotherm modeling for acid blue 113 dye adsorption onto low-cost nutraceutical industrial fenugreek seed spent. *Applied Water Science*. 10, 1–16.
- Dovi, E., Kani, A. N., Aryee, A. A., Jie, M., Li, J., Li, Z., ... & Han, R. 2021. Decontamination of bisphenol A and Congo red dye from solution by using CTAB functionalised walnut shell. *Environmental Science and Pollution Research*, 28(22), 28732-28749.
- Dubois, M., Gulik-Krzywicki, T.B. and Cabane, 1993. Growth of silica polymers in a lamellar mesophase. Langmuir. *Journal of Chemistry*. 9, 673–680.
- El Alouani M., Alehyen S. and El Achouri M, 2019, Preparation, characterization, and application of Metakaolin-based geopolymer for removal of methylene blue from aqueous solution. *Journal of Chemistry* 42, 1-8.
- El Messaoudi, N., El Khomri, M., Chlif, N., Chegini, Z. G., Dbik, A., Bentahar, S., & Lacherai, A. 2021. Desorption of Congo red from dye-loaded Phoenix dactylifera date stones and Ziziphus lotus jujube shells. *Groundwater for Sustainable Development*, *12*, 100552.
- El Messaoudi N., El Khomri M., Dbik A., Bentahar S., Lacherai A. and Bakiz B., 2016. Biosorption of Congo red in a fixed-bed column from aqueous solution using jujube shell: Experimental and mathematical modeling. *Journal of Environmental Chemical Engineering.* 4, 3848-3855.
- Eltaweil A. S., Ali Mohamed H., Abd El-Monaem E. M. and El-Subruiti G. M., 2020. Mesoporous magnetic biochar composite for enhanced adsorption of malachite green dye: Characterization, adsorption kinetics, thermodynamics and isotherms. *Advanced Powder Technology* 31, 1253-1263.
- Fathy, M., Selim, H., dan Shahawy, A. E. 2020. Chitosan/MCM-48 nanocomposite as a potential adsorbent for removing phenol from aqueous solution. *RSC Advances*, *10*(39), 23417-23430.
- Florenza X., Solano A. M. S., Centellas F., Martínez-Huitle C. A., Brillas E., and Garcia-Segura S., 2014. Degradation of the azo dye Acid Red 1 by anodic oxidation and indirect electrochemical processes based

on Fenton's reaction chemistry. Relationship between decolorization, mineralization and products. *Electrochimica Acta*. 142, 276–288.

- Foo K. and Hameed B., 2010, Insights into the modeling of adsorption isotherm systems. *Journal Chemical Engineering*. 156, 2–10.
- Forgacs E., Cserhati T. and Oros G., 2004. Removal of syntetic dyes from wastewaters. *Journal Environ Manaq*, 30, 963-971.
- Foroughi-Dahr M., Abolghasemi H., Esmaili M., Shojamoradi A. and Fatoorehchi H., 2014. Adsorption Characteristics of Congo Red from Aqueous Solution onto Tea Waste. *Chemical Engineering Communications*. 202, 181-193.
- Freundlich H.M.F., 1906. Uber die adsorption in losungen. *Z. Phys. Chem.* 57, 385– 875.
- Froba M., Kohn R. and Bouffaud G., 1999. Fe₂O₃ Nanoparticles within Mesoporous MCM-48 Silica: In Situ Formation and Characterization. *Chem. Mater.* 11, 2858-2865.
- Gau, A.A., Taba, P. and Budi P., 2015. Modifikasi Silika Mesopori MCM-48 dengan 3 Amino propil trimetok sisilan (3-APTMS) dan Uji Adsorpsivitasnya Terhadap lon Pb^{2+.} Jurnal Techno. 04, 1-8.
- Ghasemi E. and Kaykhaii, M., 2016. Application of Micro-cloud point extraction for spectrophotometric determination of Malachite green, Crystal violet and Rhodamine B in aqueous samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 164, 93–97.
- Goscianska J. and Ciesielczyk, F., 2019. Microporous and Mesoporous Materials Lanthanum enriched aminosilane-grafted mesoporous carbon material for efficient adsorption of tartrazine azo dye. *Microporous* and *Mesoporous Materials*. 280, 7–19.
- Guo, M., Liu, Q., Lu, S., Han, R., Fu, K., Song, C., dan Liu, C. 2020. Synthesis of Silanol-Rich MCM-48 with Mixed Surfactants and Their Application in Acetone Adsorption: Equilibrium, Kinetic, and Thermodynamic Studies. *Langmuir*, 36(39), 11528-11537.
- Guo X. and Wang, J.L., 2019. Comparison of linearization methods for modeling the 891 Langmuir adsorption isotherm. *Journal Chemical Liquid.* 296, 1-12.
- Gupta V.K. and Suhas. 2009. Application of low-cost adsorbents for dye removal, *Journal Environ Manage*. 90, 33-42.

- Habiba, U., Siddique, T.A., Joo, T.C., Salleh, A., Ang, B.C. and Afifi, A.M., 2017. Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and chromium(VI) byflocculation/adsorption. *Journal Carbohydrat Polym*. 157, 1568–1576.
- Haji A. and Naebe M., 2020. Cleaner dyeing of textiles using plasma treatment and natural dyes. *Journal of Cleaner Production*. 265, 1-11.
- Hameed B.H. and El-Khaiary, M.I., 2008. Malachite green adsorption by rattan sawdust: lsotherm, kinetic and mechanism modeling. *Journal of Hazardous Materials*. 159, 574–579.
- Hou, B., Sun, J. dan You Hu, Y., 2011. Simultaneous Congo red decolorization and electricity generation in air-cathode singlechamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes. *Bioresour. Technol.* 102, 4433–4438.
- Igwegbe, C. A., Ighalo, J. O., Onyechi, K. K., & Onukwuli, O. D. 2021. Adsorption of Congo red and malachite green using H3PO4 and NaCI-modified activated carbon from rubber (Hevea brasiliensis) seed shells. *Sustainable Water Resources Management*, 7(4), 1-16.
- Inglezakis, V., Poulopoulos, S. and Kazemian, H., 2018. Insights into the Sshaped sorption isotherms and their dimensionless forms. *Microporous Mesoporous Mater.* 272, 166–176.
- Iqbal M., Iqbal N., Bhatti I. A., Ahmad N. and Zahid M., 2016. Response surface methodology application in optimization of cadmium adsorption by shoe waste: A good option of waste mitigation by waste. *Ecological Engineering*. 88, 265–275.
- Iriany, Krisnawati and Jasinda, 2013. Adsorption of Heavy Metal Iron Fe(III) using Activated Powdered Duck Eggshell Adsorbent. *Environ. Concerns*. 7, 37-40.
- Jasim A.M. and Abbas M.A., 2019. Adsorption of Malachite Green Dye by Bio-micro-adsorbent from Aqueous Solution at Different Temperatures. *Journal of Physics*. 1294, 1-8.
- Jesus, R.A., Rabelo, A.S., Figueiredo, R.T., Cides Da Silva, L.C. Codentino, I.C., Fantini, M.C.A., Araújo, G.L.B., Araújo, A.A.S. and Mesquita, M.E., 2016. Synthesis and application of the MCM-41 and SBA-15 as matrices for in vitro efavirenz release study. *Journal Drug Deliv Technol.* 31, 153–159.

- Jiang, Y., Abukhadra, M. R., Refay, N. M., Sharaf, M. F., El-Meligy, M. A., dan Awwad, E. M. 2020. Synthesis of chitosan/MCM-48 and βcyclodextrin/MCM-48 composites as bio-adsorbents for environmental removal of Cd2+ ions; kinetic and equilibrium studies. *Reactive and Functional Polymers*, *154*, 104675.
- Jumadi J., Kamari A., Rahim N.A., Wong S.T.S., Yusoff S.N.M., Ishak S., Abdulrasool M.M. and Kumaran S., 2019. Removal of methylene blue and congo red by magnetic chitosan nanocomposite: Characterization and adsorption studies. of Physics: Conference Series. 1397, 1742-6596.
- Kang, K.K., Byun, C.S. and Ahn, W.S., 2000. Titanium iso-propoxide grafting on M41S type hosts: catalytic and adsorption study. *Journal Chemical. Catalis.* 129, 335–340.
- Kant R., 2012. Textile dyeing industry an environmental hazard. *Journal Natural Science*. 04, 22-26.
- Khaniabadi Y.O., Nourmoradi, H., Mohammadi, M.J., Yari, A.R. and Services, H., 2017. Adsorption of Congo Red Dye from Aqueous Solutions by Montmorillonite as a Low-cost Adsorbent. *Journal Natural Science* 7, 1-11.
- Kim H., Jang K., Galebach P., Gilbert C., Tompsett G., Conner C.W., Jones W.C. and Nair s., 2013. Seeded growth, silylation, and organic/water separation properties of MCM-48 membranes. *Journal of Membrane Science*. 427, 293-302.
- Kong L. and Adidharma H., 2019. A new adsorption model based on generalized van der Waals partition function for the description of all types of adsorption isotherms. *Journal Chemical Engineering.* 375, 112-122
- Kousha M., Daneshvar E., Dopeikar H., Taghavi D. and Bhatnagar A., 2012. Box–Behnken design optimization of Acid Black 1 dye biosorption by different brown macroalgae. *Journal Chemical Engineering*. 179,158-168.
- Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C. dan Beck J.S., 1992. Ordered mesoporous molecular sieves synthesized by a liquidcrystal template mechanism, *Journal Nature*. 359. 710–712.
- Kresge C.T., Vartuli J.C., Roth W.J. and Leonowicz M.E., 2004. The discovery of ExxonMobil's M41S family of mesoporous molecular sieves. *Journal Chemical Engineering Catalis*. 148, 53–72.

- Kumar V., Karnjkar, Y., George P., Singh, R.K. and Chowdhury P., 2018. Effective removal of Congo red using sunflower oil/tri-n-octylamine system in a bulk liquid membrane process and studying the transport kinetics, *Journal Chemical Engineering*. 72, 2055–2069.
- Kumari, S., Khan, A. A., Chowdhury, A., Bhakta, A. K., Mekhalif, Z., & Hussain, S. 2020. Efficient and highly selective adsorption of cationic dyes and removal of ciprofloxacin antibiotic by surface modified nickel sulfide nanomaterials: Kinetics, isotherm and adsorption mechanism. Colloids and Surfaces A: Journal Physicochemical and Engineering Aspects, 586, 124264.
- Kundu S. and Gupta A., 2006. Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization. *Journal Chemical Engineering* 122, 93–106.
- Lade H., Govindwar, S. and Paul, D., 2015. Mineralization and detoxification of the carcinogenic azo dye Congo red and real textile effluent by a polyurethane foam immobilized microbial consortium in an upflow column bioreactor. *Internasional Journal Environ Public Health.* 12, 6894–6918.
- Langmuir I., 1916. The constitution and fundamental properties of solids and liquids. *Journal Chemical. Soc.* 38, 2221–2295.
- Lau Y.Y., Wong Y.S., Teng T.T., Morad N., Rafatullah M. and Ong S.A., 2014. Coagulation-flocculation of azo dye Acid Orange 7 with green refined laterite soil. *Chemical Engineering Journal*. 246, 383-390.
- Lee S., Ho, L., Ong S., Wong Y., Voon V., Khalik F.W., Yusoff N.A. and Nordin, N., 2016. Enhanced electricity generation and degradation of the azo dye Reactive Green 19 in a photocatalytic fuel cell using ZnO/Zn as the photoanode. *Journal of Cleaner Production*. 21, 1-6.
- Lin, L., Tang, S., Wang, X., Sun, X., & Yu, A. 2020. Adsorption of malachite green from aqueous solution by nylon microplastics: Reaction mechanism and the optimum conditions by response surface methodology. *Journal Process Safety and Environmental Protection*, 140, 339-347.
- Li Z., Hanafy H., Zhang L., Sellaoui L., Schadeck Netto M., Oliveira M. L. S., Seliem M. K., Luiz Dotto G., Bonilla-Petriciolet A. and Li Q., 2020. Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous

solutions: Experiments. characterization and physical interpretations. *Journal Chemical Engineering*. 388, 1-8.

- Lipskikh O. I., Korotkova E. I., Khristunova Y. P., Barek J. dan Kratochvil B., 2018. Sensors for voltammetric determination of food azo dyes -A critical. *Journal of Chemical Electrochimica Acta* 260, 974-985.
- Liu, Y., Li, H.A., Tian, Y., Jin, Z. and Deng, H., 2018. Determination of the absolute adsorption/desorption isotherms of CH₄ and n-C₄H₁₀ on shale from a nano-scale perspective. *Journal of Chemical Fuel*. 277, 67–77.
- Madan S, Shaw R, Tiwari S and Kumar S 2019 Adsorption dynamics of Congo red dye removal using ZnO functionalized high silica zeolitic particles *Application Surface. Journal of Chemical.* 487. 907-917.
- Ma M., Ying H., Cao F., Wang Q. and Ai N., 2020. Adsorption of congo red on mesoporous activated carbon prepared by CO₂ physical activation. *Chinese Journal of Chemical Engineering* 28, 1069-1076.
- Maghfiroh, L., 2016. Adsorpsi Zat Warna Tekstil Remazol Brilliant Blue Menggunakan Zeolit yang Disintesis dari Abu Layang Batubara. Skripsi. Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Negeri Semarang. Semarang.
- Mahmoud, D., Salleh, M. and Karim, W., 2012. Langmuir model application on solid-liquid adsorption using agricultural wastes: environmental application review. *Journal Purity Util. React. Environ.* 1, 170–199.
- Maqbool, M., Sadaf, S., Bhatti, H. N., Rehmat, S., Kausar, A., Alissa, S. A., & Iqbal, M. 2021. Sodium alginate and polypyrrole composites with algal dead biomass for the adsorption of Congo red dye: Kinetics, thermodynamics and desorption studies. *Journal Surfaces and Interfaces*, 25, 101183.
- Matsumoto, M., Matsui T. and Kondo K., 1999. Adsorption Mechanism of Boric Acid on Chitosan Resin Modified by Saccharides. *Journal Of Chemical engineering*. 32, 190-196.
- Melendez-Ortiz H.I., Puente-Urbina B., Mercado-Silva J.A. and Garcia-Uriostegui L., 2019. Adsorption performance of mesoporous silicas towards a cationic dye. Influence of mesostructure on adsorption capacity. *International Journal of Applied Ceramic Technology*. 16, 1533–1543.

- Mishra, S. P., Patra, A. R., & Das, S. 2020. Methylene blue and malachite green removal from aqueous solution using waste activated carbon. *Journal Biointerface Application Chemical*, *11*(1), 7410-7421.
- Mittal A., 2006. Adsorption kinetics of removal of a toxic dye, Malachite Green. from wastewater by using hen feathers. *Journal Hazard Mater* 133, 196-202.
- Mohammad, S., Suzylawati, I. dan Momina. 2020. Study of the adsorption/desorption of MB dye solution using bentonite adsorbent coating. *Journal of Water Process Engineering*, *34*, 101155.
- Mobarak M., Mohamed E.A., Selim A.Q., Eissa M.F. and Seliem M.K., 2019. Experimental results and theoretical statistical modeling of malachite green adsorption onto MCM–41 silica/rice husk composite modified by beta radiation. *Journal of Molecular Liquids*. 273, 68–82.
- Mohamed, A., Ghobara, M.M., Abdelmaksoud, M.K. and Mohamed, G.G., 2019. Anoveland highly efficient photocatalytic degradation of malachite green dye via surface modified polyacrylo nitrile nanofibers. *Journal Technol Chemistry*. 210, 935–942.
- Mohebali, S., Bastani, D. and Shayesteh, H., 2019. Equilibrium, kinetic and thermodynamic studies of a low-cost biosorbent for the removal of Congo red dye: Acid and CTAB-acid modified celery (Apium graveolens). *Journal Moleculler Structer.* 1176, 181–193.
- Moller, K. and Bein, T., 1998. Inclusion Chemistry in Periodic Mesoporous Hosts. *Journal Chemical. Mater.* 10, 2950-2963.
- Mondal, S. and Majumder, S.K., 2019. Honeycomb-like porous activated carbon for efficient copper (II) adsorption synthesized from natural source: Kinetic study and equilibrium isotherm analysis. *Journal Environ Chemical. Eng.* 7, 1-12.
- Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R.S., Stucky, G.D., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M. and Chmelka, B.F., 1993. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures, *Science, Journal of Chemical*. 261, 1299-1303.
- Muinde, V. M., Onyari, J. M., Wamalwa, B., & Wabomba, J. N. 2020. Adsorption of malachite green dye from aqueous solutions using mesoporous chitosan-zinc oxide composite material. *Journal Environmental Chemistry and Ecotoxicology*, 2, 115-125.

- Murray K.E., Thomas S.M. and Bodour A.A., 2010. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. *Journal Environ Pollut*. 158, 62-71.
- Naseem K., Farooqi Z. H., Begum, R. and Irfan, A., 2018. Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts. *Journal of Cleaner Production*. 187, 296–307.
- Nejat R, Mahjoub A.R, Hekmatian Z, and Azadbakht T., 2015. Pdfunctionalized MCM-41 nanoporous silica as an efficient and reusable catalyst for promoting organic reactions. *Journal Chemical Engineering*.5, 16029–16035.
- Noreen S., Bhatti H.N., Iqbal M., Hussain F. and Sarim F.M., 2020. Journal of Applied Biological Chemistry.147, 439-452.
- Oladipo A.A. and Gazi, M., 2014. Enhanced removal of crystal violet by low cost alginate/acid activated bentonite composite beads: Optimization and modelling using non-linear regression technique. Journal of Water Process Engineering. 2, 43-52.
- Olusegun S.J. and Mohallem N.D.S., 2020. Comparative adsorption mechanism of doxycycline and Congo red using synthesized kaolinite supported CoFe₂O₄ nanoparticles. *Journal Environmental Pollution*. 260, 1-12.
- Pajchel L., and Kolodziejski W., 2018. Synthesis and characterization of MCM-48 hydroxyapatite composites for drug delivery ibu profen incorporation. location and release studies. *Journal Mater Engineering*.91, 734–742.
- Pang X., Sellaoui L., Franco D., Dotto G. L., Georgin J., Bajahzar A., Belmabrouk H., Ben Lamine A., Bonilla-Petriciolet A., and Li Z., 2019. Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models. *Journal Chemical Engineering*. 378, 1-14.
- Papinutti L., Mouso N. and Forchiassin F., 2006. Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran–Fomes sclerodermeus. *Journal Enzyme* and *Microbial Technology*. 39, 848–853.
- Parshetti, G., Kalme, S., Saratale, G., & Govindwar, S. 2006. Biodegradation of Malachite Green by Kocuria rosea MTCC 1532. *Journal Acta Chimical Slovenica*, 53(4).

- Patra, C., Gupta, R., Bedadeep, D., & Narayanasamy, S. 2020. Surface treated acid-activated carbon for adsorption of anionic azo dyes from single and binary adsorptive systems: a detail insight. *Journal Environmental Pollution*, 266, 115102.
- Pavithra K.G., Kumar, P.S., Jaikumar, V. and Rajan, PS., 2019. Removal of colorants from wastewater: A review on sources and treatment strategies. *Journal. of Industrial* and *Engineering Chemistry.* 75, 1-19.
- Pereira, L. and Alves, M., 2012. Environmental protection strategies for sustainable development. *Journal Netherlands*. 37, 111 -162.
- Phan K., Broeck E., Van Den, Speybroeck V. Van, Clerck K. De, Raes, K. and Meester, S., 2020. The potential of anthocyanins from blueberries as a natural dye for cotton: A combined experimental and theoretical study. *Journal Dyes* and *Pigments*. 176, 1-9.
- Piriya, R. S., Jayabalakrishnan, R. M., Maheswari, M., Boomiraj, K., & Oumabady, S. 2020. Comparative adsorption study of malachite green dye on acid-activated carbon. *International Journal of Environmental Analytical Chemistry*, 1-15.
- Przystas W., Zabłocka-Godlewska, E. and Grabińska-Sota E, 2012, Biological removal of azo and triphenylmethane dyes and toxicity of process by-products. *Journal Water, Air, & Soil Pollution*, 223, 1581–1592.
- Qi, R., Lin, X., Dai, J., Zhao, H., Liu, S., Fei, T. dan Zhang, T., 2018. Humidity sensors based on MCM-41 polypyrrole hybrid fi Im via insitu polymerization. *Journal Actuators Chemistry*. 277, 584–590.
- Qu W., Yuan T., Yin G., Xu S., Zhang Q., and Su H., 2019. Effect of properties of activated carbon on malachite green adsorption. *Journal Fuel* 249, 45-53.
- Rajabi M., Mahanpoor K. and Moradi O., 2019, Preparation of PMMA/GO and PMMA/GO-Fe3O4 nanocomposites for malachite green dye adsorption: Kinetic and thermodynamic studies. *Journal Composites Part Engineering* 167, 544-555.
- Raji, F. and Pakizeh, M., 2013. Study of Hg(II) species removal from aqueous solution using hybrid ZnCl₂-MCM-41 adsorbent. *Journal of Chemistry*. 282, 415–424.

- Rao, N., Wang, M., Shang, Z., Hou, Y., Fan, G. and Li, J., 2018. CO₂ adsorption by aminefunctionalized MCM-41: a comparison between impregnation and grafting modification methods. *Journal Energy Fuel*. 32, 670–677.
- Rehman A., Usman M., Bokhari H.T., Haq U.A., Saeed M., Ur-Rahman A.M.H., Siddiq M., Rasheed A. and Un-Nisa M., 2020. The application of cationic-nonionic mixed micellar media for enhanced solubilization of Direct Brown 2 dye. *Journal of Molecular Liquids*. 301, 1-14.
- Richardson S.D. and Kimura S.Y., 2016. Water Analysis: Emerging Contaminants and Current Issues. *Journal of Analytical Chemistry*. 88, 56-82.
- Robati D., Rajabi M., Moradi O., Naja F., Tyagi I., Agarwal S. and Kumar V., 2016. Kinetics and thermodynamics of malachite green dye adsorption from aqueous solutions on graphene oxide and reduced graphene oxide. 214, 259–263.
- Romero, A.A., Alba, M.D., Zhou, W. and Klinowski, J., 1997. Synthesis and Characterization of the Mesoporous Silicate Molecular Sieve MCM-48. *Journal of Physics.* 101, 5294-5300.
- Romero, A., Nieto-Márquezb, A., Essayemc, N., Alonsoa, E. and Pinelc, C., 2019. Improving conversion of D-Glucose into short-chain alkanes over RU/MCM48 based catalysts. *Journal Microporous* and *Mesoporous Materials*. 286, 25-35.
- Rong X., Qiu F., Qin J., Zhao H., Yan J. and Yang., 2015. A facile hydrothermal synthesis, adsorption kinetics and isotherms to Congo Red azo-dye from aqueous solution of NiO/graphene nanosheets adsorbent. *Journal of Industrial* and *Engineering Chemistry.* 2340, 1-10.
- Rosa J.M., Fileti A.M.F., Tambourgi E.B. and Santana J.C.C., 2015. Dyeing of cotton with reactive dyestuffs: The continuous reuse of textile wastewater effluent treated by ultraviolet/hydrogen peroxida homogeneous photocatalysis. *Journal of Cleaner Production* 90, 60-65.
- Roth, W.J.: Synthesis of the cubic mesoporous molecular sieve MCM-48. 2000. US Patent No. 6 096 288.
- Rymbai H., Sharma R. R. and Srivastav M., 2011. Sbiocolorants and its implications in health and food industry. *International Journal of*

PharmTech Research. 3, 2228–2244.

- Ryoo, R., Joo, S. H. and Jun, S., 1999. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. *Journal of Physics. B*. 103, 7743-7746.
- Sadiq, A. C., Rahim, N. Y., dan Suah, F. B. M., 2020. Adsorption and desorption of malachite green by using chitosan-deep eutectic solvents beads. *International journal of biological macromolecules*, 164, 3965-3973.
- Samanta A. K. and Agarwal P., 2009. Application of natural dyes on textiles. *Indian Journal of Fibre* and *Textile Research*. 34, 384–399.
- Santos, D.O., Santos, M.L.N., Costa, J.A.S., de Jesus, R.A., Navickiene, S., Sussuchi, E.M. and de Mesquita, M.E., 2013. Investigating the potential of functionalized MCM-41 on adsorption of Remazol Red dye. *Journal Environ Pollut. Res.* 20, 5028–5035.
- Santos, L.F.S., de Jesus, R.A., Costa, J.A.S., Gouveia, L.G.T., de Mesquita, M.E. and Navickiene, S., 2019. Evaluation of MCM-41 and MCM-48 mesoporous materials sorbents in matrix solid phase dispersion method for the determination of pesticides in soursop fruit (Annona muricata). Journal Inorganik. Chemical. 101, 45–51.
- Saratale R.G., Gandhi S.S., Purankar M.V, Kurade M.B., Govindwar, S.P., Oh S.E. and Saratale G.D., 2013. Decolorization and detoxification of sulfonated azo dye CI Remazol Red and textile effluentby isolated Lysinibacillus sp. RGS. *Journal of Bioscience* and *Bioengineering*. 115, 658–667.
- Saratale R.G., Saratale G.D., Chang J.S. and Govindwar S.P., 2011. Bacterial decolorization and degradation of azo dyes: A review. *Journal of the Taiwan Institute of Chemical Engineers*. 42, 138-157.
- Sartape A.S., Mandhare A.M., Jadhav V.V., Raut P.D., Anuse M.A. and olekar S.S., 2017. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. *Arabian Journal of Chemistry* 10, S3229-S3238.
- Sastre, A., Martin, A. and Alonso, E., 2016. Adsorption of nickelocene and ruthenocene on mesoporous silica MCM-48 and activated carbon supports in supercritical carbon dioxide. *The Journal of Supercritical Fluids*. 117, 138–146.

- Saxena S. and Raja A.S.M., 2014. Natural dyes: sources, chemistry, application and sustainability issues. *In Roadmap to sustainable textiles and clothing.* 54, 37–80.
- Sayari, A., 1996. Catalysis by Crystalline Mesoporous Molecular Sieves. Journal Chemistry of Materials. 8, 1840–1852.
- Sen S. K., Raut S., Bandyopadhyay P. and Raut S., 2016. Fungal decolouration and degradation of azo dyes: *Journal Review Fungal Biology* 30, 112-133.
- Sen, T., Jana, S., Koner, S. and Patra, A., 2010. Energy Transfer between Confined Dye and Surface Attached Au Nanoparticles of Mesoporous Silica. *Journal of Physics. C.* 114, 707-714.
- Shaban M., Abukhadra M.R., Hamd A., Amin R.R. and Abdel K.A., 2017. Photocatalytic removal of Congo red dye using MCM-48/Ni₂O₃ composite synthesized based on silica gel extracted from rice husk ash; fabrication and application. *Journal of Environmental Management*, 204, 189–199.
- Shaban, M., Hamd, A., Amin, R. R., Abukhadra, M. R., Khalek, A. A., Khan, A. A. P., dan Asiri, A. M. 2020. Preparation and characterization of MCM-48/nickel oxide composite as an efficient and reusable catalyst for the assessment of photocatalytic activity. *Journal Environmental Science and Pollution Research*, 27, 32670-32682.
- Shah, P.V. and Rajput, S.J., 2017. A comparative in vitro release study of raloxifene encapsulated ordered MCM-41 and MCM-48 nanoparticles: a dissolution kinetics study in simulated and biorelevant media. *Journal Drug Deliv Technol.* 41, 31–44.
- Shankarling G.S., Deshmukh P.P. and Joglekar A.R., 2017. Process intensification in azo dyes. *Journal of Environmental Chemical Engineering*. 5, 3302–3308.
- Siddiqua U.H., Ali S., Iqbal, M. and Hussain T, 2017. Relationship between structure and dyeing properties of reactive dyes for cotton dyeing. *Journal of Molecular Liquids*. 241, 839–844.
- Silva, J. P., Sousa, S., Rodrigues, J., Antunes, H., Porter, J. J., Goncalves, I., dan Dias, S. F., 2004, Adsorption of Acid Orange 7 Dye in Aqueous Solutions by Spent Brewery Grains, *Journal Pure and applied chemistry*. 24, 1-5.
- Sing, K. S. 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and

porosity (Recommendations 1984). *Journal Pure and applied chemistry*, *57*(4), 603-619.

- Souza, M.J.B., Garrido Pedrosa, A.M., Cecilia, J.A., Gil-Mora, A.M.,Rodríguez dan Castellón, E., 2015. Hydrodesulfurization of dibenzothiophe ne over PtMo/MCM-48 catalysts. *Journal of Molecular Catalysis. Commun.* 69, 217–222.
- Sri Devi V., Sudhakar B., Prasad K., Jeremiah Sunadh P. and Krishna M., 2020. Adsorption of Congo red from aqueous solution onto Antigonon leptopus leaf powder: Equilibrium and kinetic modeling. *Materials Today: Proceedings*. 26, 3197-3206.
- Srivastava S., Sinha R. and Roy D., 2004. Toxicological effects of malachite green. *Journal Aquatic Toxicology*. 66, 319–329.
- Sunarti T.C., 2019. Adsorption Of Anionic Congo Red Dye By Using Cellulose From Sago Cellulose From Sago Frond. 32, 1-8.
- Suryawan dan Bambang, 2004. Karakteristik Zeolit Indonesia sebagai Adsorben Uap Air. Disertasi diterbitkan. Fakultas Teknik Universitas Indonesia.
- Sutrisno, H., Arianingrum, R. and Ariswan. 2005. Silikat dan Titanium Silikat Mesopori-Mesotruktur Berbasis Struktur Heksagonal dan Kubik. *Jurnal Matematika dan Sains*. 10, 69-74.
- Taba, P., 2001. *Mesoporous Solids as Adsorbent*. PhD Thesis. the University of New South Wales. Australia.
- Taba, P., 2008. Adsorption of Water and Benzene Vapour in Mesoporous Materials. *Journal Makara Sains*. 12, 120-125.
- Taba, P., Shintadewi, N., Zakir M. and Budi P., 2020. Removal of brilliant scarlet by MCM-48 materials. *IOP Earth* and *Environmental Science*. 473, 1-9.
- Taba, P., Budi, P., Gau, A. A., Hala, Y., Fauziah, S., Sutapa, I. W., & Manga, J. 2021. Mesoporous silica modified with amino group (NH₂-MCM-48) as adsorbent of Ag (I) and Cr (III) in water. *Journal of Chemistry*, *14*, 204-211.
- Thommes M., Kaneko, K., Neimark, V.A. and Olivier, P.J., 2015. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). *Journal of Chemistry*. 87, 1051–69.

- Tkaczyk, A., Mitrowska, K. and Posyniak, A., 2020. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: *Journal a review Total Environ.* 717, 1-11.
- Uda, R. M., Yoshida, N., Iwasaki, T., & Hayashi, K. 2020. pH-triggered solubility and cytotoxicity changes of malachite green derivatives incorporated in liposomes for killing cancer cells. *Journal of Materials Chemistry B*, 8(36), 8242-8248.
- Vartuli, J.C., Schmitt, K.D., Kresge, C.T., Roth, W.J., Leonowicz, M.E., McCullen, S.B., Hellring, S.D., Beck, J.S., Schlenker, J.L., Olson, D.H. and Sheppard, E.W., 1994. Development of a formation mechanism for M41S materials. *Journal of Molecular Catalysis*. 84, 53-60.
- Vijayaraghavan, K., Padmesh, T., Palanivelu, K. and Velan, M., 2006. Biosorption of nickel (II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. *Journal Hazard. Mater.* 133, 304–308.
- Vimonse V., Lei S., Jin B., Chow, C. W. K. and Saint, C., 2009. *Kinetic study* and *equilibrium isotherm analysis of Congo Red adsorption by clay materials*. 148, 354–364.
- Wang, L., Xing, L., Liu, J., Qi, T., Zhang, S., Ma, Y., & Ning, P. 2021. Construction of lattice-confined Co-MCM-48 for boosting sulfite oxidation in wet desulfuration. *Journal Chemical Engineering*, 407, 127210.
- Wang Y., Zhang Y., Jingjing and Liu, J., 2018. Preparation of glass hollow fibre nanofiltration membrane and Congo red dye separation. *Journal of Physical Chemistry. Part B.* 59, 55–59.
- Wang, C., Boithias, L., Ning, Z., Han, Y., Sauvage, S., Sánchez-Pérez, J.M., Kuramochi, K. and Hatano, R., 2017. Comparison of Langmuir and Freundlich adsorption equations within the SWAT-K model for assessing potassium environmental losses at basin scale. Journal of Chemistry. 180, 205–211.
- Wijayanti A. Susatyo, E.B., Kurniawan C. and Sukarjo., 2018. Adsorpsi Logam Cr(IV) dan Cu(II) pada Tanah dan Pengaruh Penambahan Pupuk Organik. *Journal of Chemistry*. 7, 242-248.
- Wu, Y., Su, M., Chen, J., Xu, Z., Tang, J., Chang, X., & Chen, D. 2019. Superior adsorption of methyl orange by h-MoS2 microspheres: Isotherm, kinetics, and thermodynamic studies. *Dyes and Pigments*, *170*, 107591.

- Yan B., Lan J., Li Y., Peng Y., Shi L. and Ran R., 2020. Hexagonal Ni(OH)² nanosheets for stabilizing Pickering emulsion and Congo red adsorption. *Colloids* and *Surfaces A*. 598, 1-12.
- Yilmaz M.S., Ozdemir O.D. and Pişkin S., 2015. Synthesis and characterization of MCM-41 with different methods and adsorption of Sr²⁺ on MCM-41. *Journal of Chemistry*. 41:199–211.
- Yin, G., Sun, Z., Gao, Y., & Xu, S. 2021. Preparation of expanded graphite for malachite green dye removal from aqueous solution. *Journal Microchemical*. 166, 106190.
- Young S., Berger L. and Speare R., 2007. Amphibian chytridiomycosis: strategies for captive management and conservation. *International Zoo Yearbook*. 41, 85–95.
- Zaharia C. and Suteu D., 2012. Preliminary study of decolorization by sorption onto sawdust of a real textile effluent. Bul Inst Polit Iaşi. series: *Journal of Chemical Engineering LVIII (LXII).* 1, 9–18.
- Zaheer Z., AL-Asfar, A. and Aazam, S.E., 2019. Adsorption of methyl red on biogenic Ag@Fe nanocomposite adsorbent: Isotherms. kinetics and mechanisms. *Journal of Molecular Liquids.* 283, 287-298.
- Zelenak, V., Badanioova, M., Halamova, D., Cejka, J., Zukal, A., Murafa, N., and Goerigk, G., 2008. Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. *Canadian Journal of Chemical Engineering.* 144, 336–342.
- Zhai, S.R., Gong, Y.J., Zhang, Y., Deng, F., Luo, Q., Wu, D., and Sun, Y.H., 2004. Mixed Cationic-Nonionic Surfactans and pH Adjustment Route to Synthesize High-quality MCM-48. *Canadian Journal of Chemistry.* 51, 49-57.
- Zhang J, Li Y, Zhang C and Jing Y., 2008. Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root. *Journal Hazard Mater.* 150, 774–782.
- Zhao, D. and Goldfarb, D., 1995. Synthesis of Mesoporous Manganosilicates: Mn-MCM-41, Mn-MCM-48 and Mn-MCM-L. Journal of Chemistry. Soc. 8. 875-876.

Lampiran 1. Bagan Kerja

1. Sintesis Silika Mesopori MCM-48

2. Penghilangan Surfaktan dari Silika Mesopori MCM-48 TC dengan Pencucian HCI-etanol

3. Skema Kerja Luas Permukaan dengan Metilen Biru

4. Penentuan Panjang Gelombang Maksimum

5. Penentuan Waktu Optimum Adsorpsi MG dan CR oleh Silika Mesopori MCM-48 TC, MCM-48 C1, MCM-48 C2

6. Penentuan Konsentrasi Optimum adsorpsi MG dan CR oleh Silika Mesopori MCM-48 TC, MCM-48 C1, MCM-48 C2

7. Efektifitas Limbah Zat Warna MG dan CR oleh MCM-48

8. Desorpsi Zat Warna MG dan CR oleh MCM-48

Lampiran 2. Dokumentasi Penelitian

Pembuatan Natrium Tetrasilikat

Pembuatan Larutan Surfaktan

Larutan Natrium Tetrasilikat

Pembuatan Larutan Surfaktan

Campuran Gel

Pemanasan Campuran Gel

Proses Penyaringan Sampel

Hasil Penyaringan Sampel

Pengeringan Sampel

Sampel MCM-48

Pencucian dengan HCI-etanol

Proses Penyaringan HCI-etanol

Larutan Induk CR

Larutan Induk MG

Larutan Deret Standar MG

Larutan Deret Standar CR

Pengadukan waktu optimum CR

Pengadukan waktu optimum MG

Variasi Konsentrasi Larutan MG

Pengadukan variasi konsentrasi MG

Pengadukan variasi konsentrasi CR

Sampel Setelah Adsorpsi

Larutan MG dan CR 100 mg/L

Proses pengadukan Limbah

Proses desorpsi CR

114

Proses desorpsi MG

Larutan Induk MB

Larutan MB setelah adsorpsi

🗄 SHIMADZU

NO.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	451.34	21.849	77.506	528.5	343.33	52.792	52.218
2	582.5	89.154	10.666	655.8	530.42	3.117	3.017
3	723.31	93.53	6.138	744.52	704.02	0.571	0.514
4	794.67	74.574	25.269	852.54	744.52	6.711	6.639
5	910.4	88.469	4.735	921.97	877.61	1.186	0.344
6	958.62	78.34	17.654	981.77	923.9	4.139	2.821
7	1066.64	9.44	64.5	1195.87	983.7	128.829	79.941
8	1230.58	25.622	23.878	1340.53	1197.79	36.521	7.656
9	1394.53	98.061	1.662	1408.04	1382.96	0.131	0.103
10	1485.19	74.576	4.912	1506.41	1477.47	2.773	0.351
11	1643.35	90.008	0.854	1647.21	1589.34	1.269	0.05
12	1749.44	98.484	0.715	1759.08	1745.58	0.048	0.019
13	1865.17	98.892	1.188	1880.6	1855.52	0.065	0.076
14	2071.55	98.965	0.148	2077.33	2050.33	0.108	0.012
15	2357.01	93.163	2.85	2439.95	2341.58	0.996	0.245
16	2717.7	98.196	0.439	2775.57	2700.34	0.415	0.072
17	2852.72	45.966	38.019	2879.72	2800.64	8.565	4.678
18	2922.16	27.144	53.761	3070.68	2881.65	28.962	17.608
19	3419.79	81.534	0.386	3431.36	3404.36	2.371	0.032

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	354.9	96.844	3.418	364.55	347.19	0.093	0.112
2	466.77	60.727	38.854	534.28	405.05	11.872	11.64
3	572.86	98.661	1.361	611.43	534.28	0.257	0.265
4	667.37	98.596	0.851	686.66	611.43	0.194	0.099
5	715.59	99.116	0.349	744.52	702.09	0.113	0.032
6	802.39	88.548	11.193	883.4	744.52	3.018	2.855
7	960.55	95.01	4.799	989.48	891.11	1.016	0.913
8	1097.5	24.538	74.983	1328.95	991.41	90.588	89.585
9	1512.19	94.388	2.008	1527.62	1492.9	0.703	0.147
10	1645.28	95.132	2.186	1664.57	1627.92	0.597	0.171
11	1678.07	97.416	1.209	1724.35	1664.57	0.429	0.193
12	1743.65	98.392	1.433	1761.01	1724.36	0.143	0.116
13	1867.09	99.105	0.823	1880.6	1853.59	0.051	0.043
14	2355.08	94.149	3.219	2397.52	2339.65	0.752	0.266
15	2736.99	99.444	0.016	2744.71	2569.18	0.315	-0.002
16	2854.65	92.587	5.274	2879.72	2808.36	0.971	0.49
17	2926.01	85.646	12.089	3016.67	2881.65	3.178	2.09
18	3441.01	91.57	0.446	3491.16	3431.36	2.058	0.053

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	466.77	8.161	91.563	700.16	343.33	108.93	108.492
2	804.32	57.628	42.077	885.33	732.95	13.703	13.507
3	958.62	80.792	19.271	989.48	887.26	4.321	4.298
4	1093.64	1.943	98.103	1352.1	991.41	285.704	285.596
5	1419.61	98.511	1.082	1436.97	1406.11	0.124	0.074
6	1479.4	93.235	3.474	1498.69	1438.9	1.272	0.641
7	1512.19	93.511	2.386	1529.55	1498.69	0.709	0.161
8	1539.2	96.45	0.671	1585.49	1533.41	0.421	0.035
9	1643.35	90.736	5.818	1664.57	1587.42	2.021	1.205
10	1670.35	95.242	0.537	1724.36	1664.57	0.715	0.106
11	1741.72	98.831	1.37	1761.01	1724.36	0.074	0.107
12	1867.09	97.804	0.972	1882.52	1851.66	0.222	0.057
13	1990.54	99.094	0.417	2002.11	1971.25	0.081	0.023
14	2318.44	95.112	2.728	2339.65	2268.29	0.855	0.326
15	2688.77	99.212	0.059	2702.27	2495.89	0.376	0.005
16	2856.58	87.101	9.685	2881.65	2829.57	1.707	1.007
17	2926.01	75.493	20.519	3010.88	2883.58	5.81	4.036
18	3417.86	76.758	0.921	3429.43	3012.81	26.39	2.809

No.	Peak	Intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	354.9	95.531	4.183	364.55	341.4	0.242	0.217
2	453.27	49.974	49.755	528.5	364.55	20.258	20.05
3	578.64	93.293	6.337	655.8	530.42	2.023	1.78
4	723.31	97.723	2.132	744.52	692.44	0.19	0.17
5	798.53	85.776	14.262	871.82	750.31	3.737	3.809
6	912.33	95.89	1.509	921.97	883.4	0.355	0.097
7	960.55	86.687	10.52	985.62	921.97	2.538	1.703
8	1070.49	22.975	56.945	1197.79	987.55	76.514	46.323
9	1230.58	44.348	18.681	1336.67	1199.72	20.77	3.965
10	1421.54	98.479	0.853	1431.18	1408.04	0.114	0.053
11	1473.62	87.491	1.459	1477.47	1433.11	1.355	0.171
12	1514.12	94.057	2.415	1531.48	1504.48	0.512	0.145
13	1651.07	93.421	0.323	1666.5	1649.14	0.43	0.016
14	1741.72	98.052	0.586	1747.51	1730.15	0.124	0.027
15	1867.09	99.024	0.707	1882.52	1857.45	0.074	0.045
16	2312.65	98.311	1.082	2333.87	2171.85	0.524	0.222
17	2771.71	98.474	0.419	2823.79	2744.71	0.398	0.05
18	2854.65	71.205	22.231	2881.65	2823.79	3.876	2.32
19	2924.09	54.259	36.077	3115.04	2883.58	13.84	8.128
20	3442.94	86.551	0.392	3516.23	3435.22	4.658	0.147

1	364.55	77.578	22.171	385.76	343.33	2.208	2.164
2	418.55	69.322	29.992	433.98	387.69	3.083	2.944
3	466.77	78.341	5.712	474.49	435.91	2.489	0.726
4	507.28	63.023	28.449	528.5	476.42	6.576	3.889
5	565.14	87.602	0.962	590.22	563.21	0.987	0.207
6	619.15	93.704	6.234	634.58	599.86	0.471	0.459
7	700.16	58.8	8.744	707.88	669.3	6.659	1.092
8	723.31	34.004	46.602	738.74	709.8	7.708	4.714
9	752.24	82.838	17.17	763.81	740.67	1.099	1.096
10	792.74	77.791	13.74	808.17	765.74	2.847	1.619
11	831.32	48.208	43.566	864.11	810.1	6.848	5.092
12	902.69	61.069	33.743	918.12	866.04	4.161	3.337
13	937.4	48.336	47.473	954.76	920.05	5.409	4.726
14	1024.2	95.976	4.244	1039.63	1010.7	0.256	0.283
15	1058.92	93.169	5.568	1072.42	1039.63	0.571	0.419
16	1170.79	14.63	18.942	1186.22	1087.85	39.323	7.116
17	1284.59	67.59	16.325	1301.95	1257.59	4.733	1.935
18	1369.46	11.763	75.908	1427.32	1303.88	63.185	54.873
19	1446.61	67.087	20.522	1458.18	1429.25	3.018	1.673
20	1479.4	63.344	26.196	1500.62	1460.11	5.173	3.1
21	1587.42	4.452	89.87	1672.28	1523.76	60.443	57.026
22	1722.43	49.063	51.184	1803.44	1674.21	17.066	17.199
23	1826.59	98.519	0.312	1830.45	1803.44	0.094	0.023
24	1923.03	93.402	1.58	1934.6	1880.6	1.126	0.209
25	1973.18	94.338	0.515	2005.97	1967.39	0.775	0.06
26	2113.98	98.948	0.705	2142.91	2077.33	0.201	0.091
27	2424.52	89.82	0.819	2461.17	2391.73	3.094	0.133
28	2704.2	98.022	1.542	2735.06	2686.84	0.216	0.142
29	2810.28	92.111	3.533	2827.64	2752.42	1.296	0.361
30	2858.51	88.755	3.941	2879.72	2829.57	1.994	0.406
31	2920.23	86.735	8.199	2980.02	2881.65	3.521	1.647
32	3053.32	94.538	5.577	3128.54	2981.95	1.262	1.333
33	3421.72	80.954	0.798	3431.36	3149.76	13.093	0.562
65 MCM-48 TC/OR 1365.95 792.44 1719.43 60-1545. 1476.97 566.50 962.17 55-1637.91 1735.82 1510.01 50-1752.11 455.31 45-1561.39 1230.21 2852.07 %T 3726.02 3842.53 40-1774.85 2921.88 35-3807.19 1072.59 30-3855.46 3452.28 25-20-2500 2000 1500 1000 4000 3500 3000 500

Wavenumbers (cm-1)

Material MCM-48 TC/CR

Zat Warna CR

Lampiran 4. Data Karakterisasi SEM

Lampiran 5. Hasil SEM EDX

1. MCM-48 TC

KEMENTERIAN RISET TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS DIPONEGORO **UPT LABORATORIUM TERPADU**

Jalan Prof. Soedarto, SH Tembalang Semarang Kotak Pos 1269 Telepon (024) 76918147- Faksimile (024) 76918148, Website : <u>http://labterpadu.undip.ac.id;</u> E-mail : <u>labterpadu@live.undip.ac.id</u>

2. MCM-48 C1

3. MCM-48 C2

4. MCM-48 TC setelah adsopsi dengan zat warna MG

5. MCM-48 TC setelah adsopsi dengan zat warna CR

Lampiran 5. Penentuan Luas Permukaan dengan Metilen Biru

1. Penentuan Panjang gelombang maksimum

Hubungan antara Absorbansi dan Panjang Gelombang metilen biru

dengan konsentrasi 6 mg/L

Panjang Gelombong	Absorbansi
630	0.478
635	0.497
640	0.531
645	0.556
650	0.576
655	0.59
656	0.59
657	0.591
658	0.591
659	0.591
660	0.595
661	0.595
662	0.596
663	0.596
664	0.606
665	0.59
670	0.514
675	0.456
680	0.387
685	0.317
690	0.241

Kurva hubungan antar absorbansi dan panjang gelombang metilen biru dengan konsentrasi 6 mg/L

2. Data Kurva Standar Metilen Biru

Konsentrasi	Absorbansi
1	0.097
2	0.188
4	0.378
8	0.71
10	0.894

3. Data Penentuan Luas Permukaan Silika Mesopori MCM-48

Data penentuan luas permukaan dengan larutan metilen biru menggunakan volume 50 mL.

Sampel	FP	Abs	Ce	Co	Wa	qe	S
MCM-48 TC	100	1.286	1464.53	2932.64	0.3072	238.950	884
MCM-48 C1	100	1.244	1416.69	2932.64	0.3003	252.405	934
MCM-48 C2	100	1.058	1204.84	2932.64	0.3008	287.199	1063

$$q_e = \frac{(C_o - C_e)V}{W}$$

Contoh perhitungan jumlah metilen biru yang diadsorpsi (qe) pada:

qe =
$$\frac{(2932.64-1464.53)\frac{\text{mg}}{\text{L}}}{0,3072 \text{ g}} \times 0,05 \text{ L}$$

=238.950 mg/g

$$S = \frac{X_m \cdot N \cdot a}{Mr}$$

Contoh perhitungan luas permukaan adsorben (S) pada:

 $S = \frac{(238.950 \text{ X} 6,02 \text{ X} 197)}{320.5 \text{ g/mol}}$

=884.18 (m²/g).

Lampiran 6. Hasil Data BJH

1. Material MCM-48 TC

Quantachrome® ASIQwin™- Automated Gas Sorption Data Acquisition and Reduction © 1994-2013, Quantachrome Instruments Quantachrome version 3.01 Analysis Operator: Sample ID: Sample Deec: Sample Weight: Outgas Time: Analysis gas: Analysis Time: Analysis Mode: Report Operator: UNDIP 20210105 MCM 48TC.qps UNDIP Date:2021/01/06 Date:2021/01/12 Filename: 01160 Comment 0.0381 g Autosorb IQ Station 1 Instrument: 3.0 hrs Nitrogen 4:40 hr:min Outgas Temp.: Non-Ideality: 300 °C 6.58e-05 1/Torr CellType: 9mm w/o rod Bath temp.: 77.35 K Analysis Mode: VoldVol. Mode: Standard VoldVol Remeasure: off He Measure Cold Zone V: 1.6226 cc 18.0154 cc Warm Zone V: Raw Analysis Data

			iysis Data —			
			_	-	-	
Press	P0	Volume @ STP	Time	TO	Equ	
[ToT]	[noT]	[cc]	[min]			
38.7915	760.00	4.59581	12.6	0	1	
75.4408	760.00	5.60007	17.1	0	1	
116.268	760.00	6.48742	23.1	0	1	
154.072	760.00	7.29142	29.1	0	1	
190.792	760.00	8.47783	38.0	0	1	
227.885	760.00	10.8247	51.7	0	1	
266.637	760.00	12.8487	64.8	0	1	
304.099	760.00	13.3411	72.0	0	1	
342.347	760.00	13.5414	11.3		1	
3/9.301	760.00	13./114	00.0		1	
417.040	760.00	13.0019	04.2		1	
400.004	760.00	14.0005	00.0	u u	1	
493.931	760.00	14.131	91.9	2		
560 583	760.00	14,4128	100.0	ň		
608.000	760.00	14,6522	105.3	ň		
645 584	760.00	14 0087	100.0	ň		
684,860	760.00	15.4223	117.5	ň		
722 542	760.00	16.449	128.5	ŏ		
755,985	760.00	18,7944	148.2	ŏ	i	
754 548	760.00	18,816	150.4	õ	i	
722 323	760.00	17.5403	161.6	õ	i	
683,498	760.00	16 7858	169.4	õ	i	
646.311	760.00	16.4347	175.1	õ	i .	
606.895	760.00	16.2184	181.2	0	1	
569.202	760.00	16.1021	185.9	0	1	
531.475	760.00	15.9697	189.6	0	1	
493.356	760.00	15.8413	194.1	0	1	
455.351	760.00	15.7069	199.1	0	1	
417.585	760.00	15.5662	203.8	0	1	
379.582	760.00	15.3094	210.5	0	1	
338.213	760.00	13.6626	222.6	0	1	
304.167	760.00	13.4831	227.3	0	1	
266.545	760.00	13.1784	231.4	0	1	
227.107	760.00	11.9295	240.0	0	1	
189.564	760.00	9.4904	252.7	0	1	
150.381	760.00	7.94191	260.3	0	1	
111.491	760.00	6.99264	268.1	<u>o</u>	1	
75.6987	760.00	6.16008	2/3.5	0	1	
38./338	760.00	5.0786	280.1	U	1	

Daw Analysis Data

Quantachrome® ASiQwin ™- Automated Gas Sorption Data Acquisition and Reduction © 1994-2013, Quantachrome Instruments version 3.01

UNDIP	Date:2021/01/06	Operator: UNDIP
Date:2021/01/12		
01160	Filename:	20210106 MCM 48TC.qps
	Comment:	
0.0381 g	Instrument:	Autosorb iQ Station 1
3.0 hrs	Outgas Temp.:	300 °C
Nitrogen	Non-ideality:	6.58e-05 1/Torr
CellType:	9mm w/o rod	
4:40 hr:min	Bath temp.:	77.35 K
Standard		VoidVol Remeasure: off
He Measure	Cold Zone V:	1.6226 cc
Warm Zone V:	18.0154 cc	
	UNDIP Date:2021/01/12 01160 0.0381 g 3.0 hrs Nitrogen CellType: 4:40 hr:min Standard He Measure Warm Zone V:	UNDIP Date:2021/01/06 Date:2021/01/12 01160 Filename: Comment: 0.0381 g Instrument: 3.0 hrs Outgas Temp.: Nitrogen Non-ideality: CellType: 9mm w/o rod 4:40 hr:min Bath temp.: Standard He Measure Cold Zone V: Warm Zone V: 18.0154 cc

BJH Pore Size Distribution Adsorption Data Reduction Parameters Data

Thermal Transpiration: on <u>t-Method</u> Calc. method: de Boer	Eff. mol. diameter (D): 3.54	Å Eff. cell stem diam. (d): 4.0000 Å mm
BJH/DH Moving pt. avg.: off	Ignoring P-tags below 0.3	5 P/Po
AdsorbateNitrogen Molec. Wt.: 28.013	Temperature77.35Cross Section:16.20	50K Liquid Density: 0.808 g/cc 00 _Ų

BJH Pore Size Distribution Adsorption Data

Radius	Pore Volume	Pore Surf	dV(r)	dS(r)	dV(logr)	dS(logr)
[Å]	[cc/g]	[m²/g]	[cc/Å/g]	[m²/Å/g]	[cc/g]	[cc/g]
15.2842	4.2170e-02	5.5181e+01	2.5555e-02	3.3440e+01	8.9848e-01	1.1757e+03
17.0694	5.6145e-02	7.1555e+01	7.2773e-03	8.5267e+00	2.8572e-01	3.3478e+02
19.1085	6.7357e-02	8.3291e+01	5.1960e-03	5.4384e+00	2.2838e-01	2.3903e+02
21.5118	7.6522e-02	9.1812e+01	3.4603e-03	3.2171e+00	1.7118e-01	1.5915e+02
24.4495	8.4415e-02	9.8268e+01	2.4461e-03	2.0010e+00	1.3751e-01	1.1248e+02
28.0797	9.1323e-02	1.0319e+02	1.7125e-03	1.2197e+00	1.1053e-01	7.8726e+01
32.7226	9.7985e-02	1.0726e+02	1.2684e-03	7.7526e-01	9.5366e-02	5.8288e+01
38.9025	1.0528e-01	1.1101e+02	1.0260e-03	5.2749e-01	9.1652e-02	4.7119e+01
47.7869	1.1849e-01	1.1654e+02	1.2389e-03	5.1850e-01	1.3575e-01	5.6815e+01
61.5741	1.3066e-01	1.2049e+02	7.1978e-04	2.3379e-01	1.0141e-01	3.2938e+01
87.4942	1.5654e-01	1.2641e+02	7.4104e-04	1.6939e-01	1.4729e-01	3.3668e+01
154.7788	2.0584e-01	1.3278e+02	4.9479e-04	6.3935e-02	1.7007e-01	2.1976e+01
1012.7923	3.0411e-01	1.3472e+02	6.0792e-05	1.2005e-03	1.0350e-01	2.0439e+00
		<u>B</u> ,	JH adsorption summ	ary		
			Surface Area =	134.719 n	n²/g	
		r	Pore Volume =	0.304 c 2 1 511 Å	c/g	
		r	r = radius Dv(1) =	Z 1.311 <i>F</i>	1	

2. Material MCM-48 C1

		Quantachrome© ASIQwin Acquisiti © 1994-2013, Qu Ve	™- Automated Gas Sorption D on and Reduction antachrome Instruments reion 3.01	ata	Quantachrome
A <u>nalysis</u> Operator: Sample ID: Sample Desc: Sample Weight-	UNDIP 01161	Date:2021/01/07 Filename: Comment: Instrument:	Report Operator: UNDIP 20210107 MCM 48C2.qps Autosorb IQ Station 1	Date:2	021/01/12
Outgas Time: Analysis gas: Analysis Time:	3.0 hrs Nitrogen 5:14 hrmin	Outgas Temp.: Non-Ideality: Bath temp.:	300 °C 6.58e-05 1/Torr 77.35 K	CellType:	9mm w/o rod
Analysis Mode: VoldVol. Mode:	Standard He Measure	Cold Zone V: Raw A	1.50991 cc nalvsis Data	VoldVol Remeasure: Warm Zone V:	off 17.0845 cc

. .

-

			iysis Data —			
Drass	PO	Volume @ STP	Time	Tol	Fou	
F1000	rv.	Volume (g a re	11112	101	cqu	
[ToT]	[TOT]	[cc]	[min]			
37.4715	760.00	1.251	5.2	0	1	
76.7405	760.00	1.51874	8.5	0	1	
113.323	760.00	1.71668	10.8	0	1	
151.356	760.00	1.90318	13.0	0	1	
190.675	760.00	2.10834	16.7	0	1	
228.431	760.00	2.3276	21.1	0	1	
267.248	760.00	2.54558	27.0	0	1	
304.715	760.00	2.761	33.2	0	1	
341.431	760.00	2.9353	36.5	ō	1	
380.266	760.00	3.18328	42.2	0	1	
417.77	760.00	3.44124	46.5	0	1	
455 476	760.00	3,72982	51.6	ō	1	
494 225	760.00	4 07836	58.3	õ	- i	
532.082	760.00	4.45924	65.4	ŏ	i	
570.046	760.00	4,90792	72.7	ō	1	
607 444	760.00	5.4022	79.4	ŏ	i i	
648 017	760.00	6.21655	89.4	ő	i i	
684 392	760.00	7 33287	00.0	ň		
721 697	760.00	10,5598	126.5	ŏ		
755 587	760.00	17 9289	165.2	ň		
754 30	760.00	17 04/2	167.3	ŏ		
709.05	760.00	14,6520	190.5	ň		
722.405	760.00	0.95479	109.0			
645.07	760.00	3.004/0	210.1	8		
606 708	760.00	6.24102	247.5	ň		
550 207	760.00	0.24192	241.0			
509.207	760.00	0.04972	204.7			
001.001	760.00	0.00002	201.4			
494.142	760.00	4.0///9	200.7	2		
400./00	760.00	4.00002	2/1.9			
417.410	760.00	4.05619	2/1.2			
3/9.631	760.00	3.77046	262.2	0	1	
341.576	760.00	3.46151	287.4	0	1	
304.346	760.00	3.22226	291.9	0	1	
200.50	760.00	2.96241	295.9	0	1	
228.365	760.00	2.76083	298.7	0	1	
190.725	760.00	2.50065	301.1	0	1	
152.577	760.00	2.24656	303.4	0	1	
114.484	760.00	1.99841	305.9	0	1	
75.2764	760.00	1.70658	310.7	0	1	
37.929	760.00	1.37959	314.7	0	1	

Analysis Report

Quantachrome® ASiQwin ™- Automated Gas Sorption Acquisition and © 1994-2013, Quantachrome version

Operator:	UNDIP	Date:2020/12/02	Operator:	UNDIP	
Date:2020/12/03			-		
Sample ID:	01134	Filename:	20201202 MC	CM 48 C1.qps	
Sample Desc:		Comment:			
Sample Weight:	0.0441 g	Instrument:	Autosorb iQ Station 1		
Outgas Time:	3.0 hrs	Outgas Temp.:	300 °C		
Analysis gas:	Nitrogen	Non-ideality:6.58e-0	05 1/Torr CellTy	/pe: 9mm w/o rod	
Analysis Time:	13:16 hr:min	Bath temp.:	77.35 K		
Analysis Mode:	Standard	VoidVol Remeasur	e: off		
VoidVol. Mode:	He Measure	Cold Zone V:	1.61454 cc		
		СС			

BJH Pore Size Distribution Adsorption Data Reduction Parameters Data

	Thermal Transpiration: on		al Eff. mol. diameter (D): 3.54 Å			Eff.c 4.000	ell stem di 0 mm	am. (d):
t-Method	Calc. metho	od: de Bo	er					
BJH/DH method	Moving pt. a	vg.: off	Igno	oring P-tags below ().35 P/Po			
Adsorbate	Nitrogen Molec. Wt.:	28.013	Tem 3 Cros	nperature 77 ss Section: 16	7.350K 6.200 _Ų	Liqui	d Density:	0.808 g/cc
		BJH P	ore Size Dist	ribution Ads	orption	Data		
					-			
Radius	Pore Volume	P	ore Surf Area	dV(r)	dS(r)		dV(logr)	dS(logr)
[Å]	[cc/g]		[m²/g]	[cc/Å/g]	[m²//	/g]	[cc/g]	[cc/g]
15.2694	2.21	25e-02	2.8980e+01	1.3704e-02	1.	7950e+01	4.8138e-01	6.3052e+02
17.0491	4.57	′54e-02	5.6699e+01	1.2148e-02	1.	4251e+01	4.7638e-01	5.5883e+02
19.1044	6.40	97e-02	7.5901e+01	8.4708e-03	8.	8679e+00	3.7222e-01	3.8967e+02
21.5333	8.59	48e-02	9.6197e+01	8.1155e-03	7.	5376e+00	4.0186e-01	3.7325e+02
24.4833	1.09	45e-01	1.1540e+02	7.3287e-03	5.	9867e+00	4.1256e-01	3.3702e+02
28.0843	1.34	28e-01	1.3308e+02	6.2139e-03	4.	4252e+00	4.0116e-01	2.8568e+02
32.6998	1.59	17e-01	1.4830e+02	4.7532e-03	2.	9072e+00	3.5712e-01	2.1842e+02
38.8951	1.83	846e-01	1.6079e+02	3.3958e-03	1.	7461e+00	3.0326e-01	1.5594e+02
47.9270	2.13	33e-01	1.7326e+02	2.7383e-03	1.	1427e+00	3.0088e-01	1.2556e+02
61.6515	2.54	80e-01	1.8671e+02	2.5069e-03	8.1	1326e-013	3.5373e-01	1.1475e+02
86.5988	3.22	201e-01	2.0223e+02	2.0150e-03	4.6	6536e-01	3.9677e-01	9.1635e+01
152.0701	4.63	80e-01	2.2088e+02	1.4530e-03	1.9	9110e-014	4.9081e-01	6.4551e+01
949.5892	6.82	267e-01	2.2549e+02	1.4616e-04	3.0	0784e-032	2.3608e-01	4.9722e+00
	1		BJH	adsorption summa	ary			
			F	Surface Area = Pore Volume = Pore Radius Dv(r) =		225.488 r 0.683 cc 2 1.533 Å	m²/g :/g	

3. Material MCM-48 C2

		Quantachrome© ASIQwin Acquisitic © 1994-2013, Qu Ve	- Automated Gas Sorption Da on and Reduction antachrome Instruments reion 3.01	ata	Quantachrome
<u>Analysis</u> Operator: Sample ID: Sample Desc: Sample Weight:	UNDIP 01134 0.0441 a	Date:2020/12/02 Filename: Comment: Instrument:	Report Operator: UNDIP 20201202 MCM 48 C1.qps Autosorb IQ Station 1	Date:2	020/12/03
Outgas Time: Analysis gas: Analysis Time:	3.0 hrs Nitrogen 13:16 hr:min	Outgas Temp.: Non-Ideality: Bath temp.:	300 °C 6.58e-05 1/Torr 77.35 K	СеПТуре:	9mm w/o rod
Analysis Mode: VoldVol. Mode:	Standard He Measure	Cold Zone V: Raw Al	1.61454 cc nalysis Data	VoldVol Remeasure: Warm Zone V:	off 16.9532 cc

Raw Analysis Data						
		V-1	-		-	
Press	P0	Volume @ STP	Time	TO	Equ	
[ToT]	[ToT]	[cc]	[min]			
38.9538	760.00	3.10026	31.6	0	1	
76.6729	760.00	3.86804	90.1	0	1	
113.609	760.00	4.41043	95.7	<u>o</u>	1	
152.968	760.00	5.05929	103.0	0	1	
190.721	760.00	5.70542	109.2	0	1	
227.390	760.00	0.22030	117.0	ů.		
200.71	760.00	0./190	129.7			
342 201	760.00	7.13004	153.1	× ×		
379 354	760.00	7 97197	151.4	ŏ		
418 219	760.00	841781	171.9	ő	1	
456 141	760.00	8 89547	184.5	ő	i	
493,808	760.00	9.40666	196.2	õ	i	
531.749	760.00	9.93907	209.2	õ	i	
569.655	760.00	10.4863	222.9	0	1	
608.821	760.00	11.1698	240.4	0	1	
645.399	760.00	12.1074	265.2	0	1	
683.592	760.00	13.6506	299.8	0	1	
721.818	760.00	17.0536	357.5	0	1	
755.692	760.00	23.0884	454.4	0	1	
753.437	760.00	23.1553	462.2	0	1	
721.352	760.00	20.3195	526.5	0	1	
683.472	760.00	16.5315	593.9	<u>o</u>	1	
543.75	760.00	14.29/7	030.0	0	1	
608.239	760.00	13.2340	660.5	0	1	
509.000	760.00	12.3042	0//.0	ů.		
002.202 ADA 255	760.00	11./00/	700.6	0		
454.200	760.00	10 6003	710.0	ň		
418 109	760.00	10.0201	718.7	ő	1	
379.522	760.00	9,47029	731.5	õ	i	
341.69	760.00	8,51434	745.3	õ	i	
304.071	760.00	7.83567	755.7	ō	i	
266.433	760.00	7.3984	762.0	õ	i	
227.523	760.00	6.91578	766.2	0	1	
189.769	760.00	6.39805	770.3	0	1	
152.603	760.00	5.78633	773.9	0	1	
114.346	760.00	5.06066	784.1	0	1	
76.6925	760.00	4.37185	791.0	0	1	
37.1356	760.00	3.54278	796.3	0	1	

Quantachrome® ASiQwin™- Automated Gas Sorption Acquisition and © 1994-2013, Quantachrome version

Analysis			Report	
Operator:	UNDIP	Date:2021/01/07	Operator:	UNDIP
Date:2021/01/12				
Sample ID:	01161	Filename:	20210107 MC	M 48C2.qps
Sample Desc:		Comment:		
Sample Weight:	0.0289 g	Instrument:	AutosorbiQS	Station 1
Outgas Time:	3.0 hrs	Outgas Temp.:	300 °C	
Analysis gas:	Nitrogen	Non-ideality:	6.58e-05 1/To	orr
CellType:	9mm w/o rod			
Analysis Time:	5:14 hr:min	Bath temp.:	77.35 K	
Analysis Mode:	Standard	VoidVol Remeasure:	off	
VoidVol. Mode:	He Measure	Cold Zone V:	1.50991 cc	
Warm Zone V:	17.0846 cc			

BJH Pore Size Distribution Adsorption Data Reduction Parameters Data

t-Method	Thermal Tra Calc. metho	nspiration: or d: de Boer	Eff. mol. diameter (D): 3.54 Å	Eff. cell stem diam	 (d): 4.0000 mm
<u>BJH/DH</u> method	Moving pt. av	′g.: off	Ignoring P-tags be	elow 0.35 P/Po		
Adsorbate	Nitrogen Molec. Wt.:	28.013	Temperature Cross Section:	77.350K 16.200 Å ²	Liquid Density:	0.808 g/cc

BJH Pore Size Distribution Adsorption Data Radius Pore Volume dV(logr) dS(logr) dV(r) dS(r) Pore Surf Area [Å] [cc/Å/g] [m²/Å/g] [cc/g] [m²/g] [cc/g] [cc/g] 1.4249e-02 15.3113 1.8612e+01 8.6165e-03 1.1255e+01 3.0349e-01 3.9642e+02 17.0592 2.3032e-02 2.8909e+01 4.7680e-03 5.5900e+00 1.8711e-01 2.1936e+02 19.1125 3.9312e-02 4.5945e+01 7.1893e-03 7.5231e+00 3.1602e-01 3.3069e+02 21.5451 6.5320e-03 3.2366e-01 3.0045e+02 5.6300e-02 6.1715e+01 6.0636e+00 24.4351 7.5531e-02 7.7455e+01 6.0489e-03 4.9510e+00 3.3986e-01 2.7817e+02 28.0781 9.9374e-02 9.4439e+01 5.8055e-03 4.1353e+00 3.7467e-01 2.6688e+02 1.2508e-01 1.1013e+02 4.9057e-03 2.9957e+00 3.6916e-01 2.2543e+02 32.7512 1.9202e+02 38.9655 1.5514e-01 1.2556e+02 4.1815e-03 2.1462e+00 3.7410e-01 47.7341 1.8696e-01 1.3890e+02 3.0754e-03 1.2885e+00 3.3669e-01 1.4107e+02 62.2050 2.4050e-01 1.5611e+02 2.8794e-03 9.2577e-01 4.0933e-01 1.3161e+02 87.9122 2.1990e-03 5.0028e-01 1.0008e+02 3.1267e-01 4.3992e-01 1.7253e+02 9.5208e+01 152.2902 5.1799e-01 1.9949e+02 2.1402e-03 2.8107e-01 7.2497e-01 929.2288 9.2556e-01 2.0827e+02 2.7955e-04 6.0168e-03 4.4395e-01 9.5552e+00 **BJH** adsorption summary Surface Area = 208.267 m²/g Pore Volume = 0.926 cc/g Pore Radius Dv(r) = **2**1.545 Å

Lampiran 7. Data Penentuan Panjang Gelombang Maksimum

Panjang Gelombang	Absorbansi
590	0.295
595	0.329
600	0.335
605	0.338
610	0.359
611	0.362
612	0.363
613	0.364
614	0.366
615	0.369
616	0.370
617	0.373
618	0.372
619	0.371
620	0.369
625	0.354
630	0.352
635	0.328
640	0.262

1. Data Lamda Max. Zat Warna MG dengan Konsentrasi 6 mg/L

Kurva hubungan antar absorbansi dan panjang gelombang zat warna MG dengan konsentrasi 6 mg/L

Panjang Gelombang	Absorbansi
470	0.241
475	0.262
480	0.287
485	0.301
490	0.315
491	0.317
492	0.318
493	0.32
494	0.323
495	0.324
496	0.328
497	0.325
498	0.324
499	0.321
500	0.317
505	0.316
510	0.309
515	0.299
520	0.277

2. Data Lamda Max. Zat Warna CR dengan Konsentrasi 12 mg/L

Kurva hubungan antar absorbansi dan panjang gelombang zat warna CR

dengan konsentrasi 12 mg/L.

Lampiran 8. Data Absorbansi Kurva Standar Zat Warna

Konsentrasi	Absorbansi
2	0.153
4	0.367
6	0.568
8	0.780
10	0.975

1. Data deret standar larutan zat warna MG

Kurva standar penentuan larutan MG dengan Spektrofotemeter UV-Vis

Konsentrasi	Absorbansi
8	0.195
10	0.260
12	0.328
14	0.390
16	0.458

2. Data deret standar larutan zat warna

Kurva standar penentuan larutan CR dengan Spektrofotemeter UV-Vis

					Jumlah MG yang
Waktu (menit)	Adsorbansi	Co (ma/L)	C _e (ma/L)	W (g)	diadsorpsi,
(((9, -)		x/m (mg/g)
5	1.2700	40.0146	12.8134	0.1074	12.6635
10	1.0500	40.0146	10.6754	0.1066	13.7613
15	0.7960	40.0146	8.2070	0.1032	15.4106
30	0.3880	40.0146	4.2420	0.1019	17.5528
45	0.1700	40.0146	2.1234	0.1014	18.6840
60	0.0990	40.0146	1.4334	0.1008	19.1375
75	0.0490	40.0146	0.9475	0.1002	19.4945
90	0.0330	40.0146	0.7920	0.1007	19.4749
105	0.0140	40.0146	0.6074	0.1022	19.2794
120	0.0450	40.0146	0.9086	0.1026	19.0575
150	0.012	40.0146	0.5879	0.1044	18.8825

Lampiran 9. Penentuan Waktu Optimum Adsorpsi MG oleh MCM-48 TC

$$\frac{x}{m} = \frac{C_o - C_e}{W} V$$

Contoh perhitungan jumlah MG yang diadsorpsi (x/m) pada t = 75 menit dengan volume 0,05 L

$$x/m = \frac{(40,0146-0.9475)\frac{mg}{L}}{0,1002 g} \times 0,05 L$$

= 19,4945 mg/g

Waktu	qt (mg/g)	q _e (mg/g)	(q _e -q _t)	log (q _e -q _t)	t/q₁
5	12.6635	19.4945	6.8311	1.9215	0.3948
10	13.7613	19.4945	5.7332	1.7463	0.7267
15	15.4106	19.4945	4.0839	1.4070	0.9734
30	17.5528	19.4945	1.9417	0.6636	1.7091
45	18.6840	19.4945	0.8105	-0.2101	2.4085
60	19.1375	19.4945	0.3571	-1.0298	3.1352
75	19.4945	19.4945	0.0000	0.0000	3.8472
90	19.4749	19.4945	0.0196	-3.9327	4.6213
105	19.2794	19.4945	0.2151	-1.5367	5.4462
120	19.0575	19.4945	0.4371	-0.8277	6.2967
150	18.8825	19.4945	0.6121	-0.4909	7.9439

Lampiran 10. Data Kinetika Reaksi Orde Satu dan Orde Dua Semu Adsorpsi MG oleh MCM-48 TC

Rumus kinetika orde satu semu

 $ln (q_e-q_t) = -kt + ln q_e$

Dari grafik kinetika orde satu semu senyawa MG diperoleh persamaan garis

y = -0.0233x + 1.2875.

Nilai k1 dapat dihitung sebagai berikut:

k1 = 0,0233 menit⁻¹

- In qe = intercept
- $ln q_e = (1.2875)$
- $q_e = 3.6237 L/mg$

R² = 0,4453

Rumus kinetika orde dua semu:

$$\mathbf{t}_{q_t}^1 = \frac{1}{\mathbf{k}_2 \mathbf{q_e}^2} + \frac{1}{\mathbf{q_e}}$$

Dari grafik kinetika orde dua semu zat warna MG diperoleh persamaan garis y = 0.051x + 0.1377, dimana nilai slope (a) sebesar 0,051 dan intercept (b) sebesar 0,1377.

Nilai k2 dapat dihitung sebagai berikut: Orde dua semu:

$$Slope = \frac{1}{Q_e}$$

$$q_e = \frac{1}{Slope}$$

$$q_e = \frac{1}{0.051}$$

$$q_e = 19,6078 \text{ mg/g}$$

$$intercept = \frac{1}{k_2 q_e^2}$$

$$k_2 = \frac{1}{(0.1377) \times (19,6078)^2}$$

$$= 0,0188 \text{ g.mg}^{-1}.\text{menit}^{-1}$$

$$R^2 = 0,9989$$

Waktu (menit)	Adsorbansi	C。 (mg/L)	C₌ (mg/L)	W (g)	Jumlah MG yang diadsorpsi,
					x/m (mg/g)
5	1.7250	40.0146	17.2352	0.1006	11.3218
10	1.5750	40.0146	15.7775	0.1035	11.7088
15	1.4520	40.0146	14.5821	0.1013	12.5530
30	1.3410	40.0146	13.5034	0.1005	13.1896
45	1.2200	40.0146	12.3275	0.1007	13.7473
60	0.9400	40.0146	9.6064	0.1041	14.6053
75	0.5880	40.0146	6.1856	0.1029	16.4378
90	0.6850	40.0146	7.1283	0.1019	16.1366
105	0.7620	40.0146	7.8766	0.102	15.7539
120	0.8850	40.0146	9.0719	0.1	15.4713
150	0.6740	40.0146	7.0214	0.1067	15.4607

Lampiran 11. Penentuan Waktu Optimum Adsorpsi MG oleh MCM-48 C1

$$\frac{x}{m} = \frac{C_o - C_e}{W} V$$

Contoh perhitungan jumlah MG yang diadsorpsi (x/m) pada t = 75 menit dengan volume 0,05 L

$$x/m = \frac{(40,0146-6.1856)\frac{mg}{L}}{0,1029 g} \times 0,05 L$$

= 16.4378 mg/g

Waktu (menit)	qt (mg/g)	q _e (mg/g)	(q _e -q _t)	log (q _e -q _t)	t/qt
5	11.3218	16.4378	5.1160	1.6324	0.4416
10	11.7088	16.4378	4.7290	1.5537	0.8541
15	12.5530	16.4378	3.8847	1.3571	1.1949
30	13.1896	16.4378	3.2481	1.1781	2.2745
45	13.7473	16.4378	2.6905	0.9897	3.2734
60	14.6053	16.4378	1.8325	0.6057	4.1081
75	16.4378	16.4378	0.0000	0.0000	4.5627
90	16.1366	16.4378	0.3012	-1.1999	5.5774
105	15.7539	16.4378	0.6839	-0.3800	6.6650
120	15.4713	16.4378	0.9665	-0.0341	7.7563
150	15.4607	16.4378	0.9771	-0.0232	9.7020

Lampiran 12. Data Kinetika Reaksi Orde Satu dan Orde Dua Semu Adsorpsi MG oleh MCM-48 C1

Rumus kinetika orde satu semu

 $ln (q_e-q_t) = -kt + ln q_e$

Dari grafik kinetika orde satu semu senyawa MG diperoleh persamaan garis

y = -0.0154x + 1.5026.

Nilai k1 dapat dihitung sebagai berikut:

 $k_1 = 0,0154 \text{ menit}^{-1}$

 $ln q_e = (1.5026)$

 $q_e = 4.4933 L/mg$

R² = 0,6653

Rumus kinetika orde dua semu:

$$\mathsf{t}_{\overline{q_t}}^1 = \frac{1}{\mathsf{k_2}\mathsf{q_e}^2} + \frac{1}{\mathsf{q_e}}$$

Dari grafik kinetika orde dua semu zat warna MG diperoleh persamaan garis y = 0.062x + 0.2478, dimana nilai slope (a) sebesar 0,062 dan intercept (b) sebesar 0,2478.

Nilai k2 dapat dihitung sebagai berikut: Orde dua semu:

$$Slope = \frac{1}{Q_e}$$

$$q_e = \frac{1}{Slope}$$

$$q_e = \frac{1}{0,062}$$

$$q_e = 16,1290 \text{ mg/g}$$

$$intercept = \frac{1}{k_2 q_e^2}$$

$$k_2 = \frac{1}{(0,2478) \times (16.1290)^2}$$

$$= 0,0155 \text{ g.mg}^{-1}.\text{menit}^{-1}$$

Waktu	Adaarkanai	C。	Ce	W (g)	Jumlah MG yang
(menit)	Adsorbansi	(mg/L)	(mg/L)		diadsorpsi,
· · ·			,		x/m (mg/g)
5	1.7200	40.0146	17.1866	0.1013	11.2675
10	1.4600	40.0146	14.6599	0.1021	12.4166
15	1.3100	40.0146	13.2021	0.1039	12.9030
30	1.2700	40.0146	12.8134	0.1	13.6006
45	0.9800	40.0146	9.9951	0.1043	14.3909
60	0.9400	40.0146	9.6064	0.1006	15.1134
75	0.9250	40.0146	9.4606	0.1001	15.2617
90	0.8350	40.0146	8.5860	0.1017	15.4516
105	0.6900	40.0146	7.1769	0.1068	15.3735
120	0.8500	40.0146	8.7318	0.1024	15.2748
150	0.7210	40.0146	7.4781	0.1088	14.9524

Lampiran 13. Penentuan Waktu Optimum Adsorpsi MG oleh MCM-48 C2

$$\frac{x}{m} = \frac{C_o - C_e}{W} V$$

Contoh perhitungan jumlah MG yang diadsorpsi (x/m) pada t = 90 menit dengan volume 0,05 L

$$x/m = \frac{(40,0146-8.5860)\frac{mg}{L}}{0,1017 \text{ g}} \times 0,05 \text{ L}$$

= 15.4516 mg/g

Waktu (menit)	qt (mg/g)	q _e (mg/g)	(q _e -q _t)	log (q _e -q _t)	t/q _t
5	11.2675	15.4516	4.1841	1.4313	0.4438
10	12.4166	15.4516	3.0350	1.1102	0.8054
15	12.9030	15.4516	2.5486	0.9355	1.1625
30	13.6006	15.4516	1.8510	0.6157	2.2058
45	14.3909	15.4516	1.0607	0.0589	3.1270
60	15.1134	15.4516	0.3382	-1.0841	3.9700
75	15.2617	15.4516	0.1899	-1.6612	4.9143
90	15.4516	15.4516	0.0000	0.0000	5.8246
105	15.3735	15.4516	0.0782	-2.5491	6.8300
120	15.2748	15.4516	0.1768	-1.7327	7.8561
150	14.9524	15.4516	0.4992	-0.6948	10.0318

Lampiran 14. Data Kinetika Reaksi Orde Satu dan Orde Dua Semu Adsorpsi MG oleh MCM-48 C2

Rumus kinetika orde satu semu

 $ln (q_e-q_t) = -kt + ln q_e$

Dari grafik kinetika orde satu semu senyawa MG diperoleh persamaan garis

$$y = -0.0209x + 1.0132.$$

 $k_1 = 0,0209 \text{ menit}^{-1}$

In qe = intercept

$$ln q_e = (1.0132)$$

 $q_e = 2,7544 L/mg$

R² = 0,5879

Rumus kinetika orde dua semu:

$$t\frac{1}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e}$$

Dari grafik kinetika orde dua semu zat warna MG diperoleh persamaan garis

y = 0.0646x + 0.1503, dimana nilai slope (a) sebesar 0,0646 dan intercept(b) sebesar 0,1503.

Nilai k2 dapat dihitung sebagai berikut:

Orde dua semu:

Slope =
$$\frac{1}{Q_e}$$

$$q_e = \frac{1}{Slope}$$

$$q_e = \frac{1}{0,0646}$$

$$intercept = \frac{1}{k_2 q_e^2}$$

k2 =
$$\frac{1}{(0,1503) \times (15,4798)^2}$$

Waktu (menit)	Ads	C。 (mg/L)	C _e (mg/L)	W (g)	Jumlah CR yang diadsorpsi, x/m (mg/g)
3	0.450	229.9390	15.7744	0.1011	105.9172
5	0.264	229.9390	10.1037	0.1018	107.9741
7	0.226	229.9390	8.9451	0.1011	109.2947
10	0.204	229.9390	8.2744	0.1008	109.9527
15	0.056	229.9390	3.7622	0.1024	110.4379
20	0.033	229.9390	3.0610	0.1006	112.7624
25	0.040	229.9390	3.2744	0.1018	111.3284
30	0.019	229.9390	2.6341	0.1022	111.2059
35	0.011	229.9390	2.3902	0.1037	109.7149
40	0.014	229.9390	2.4817	0.1045	108.8313

Lampiran 15. Penentuan Waktu Optimum Adsorpsi CR oleh MCM-48 TC

$$\frac{x}{m} = \frac{C_{o} - C_{e}}{W} V$$

Contoh perhitungan jumlah CR yang diadsorpsi (x/m) pada t = 20 menit dengan volume 0,05 L

$$x/m = {(229.9390-3.0610){mg \over L} \over 0,1006 \text{ g}} \times 0,05 \text{ L}$$

= 112.7624 mg/g

Waktu (menit)	qt (mg/g)	q _e (mg/g)	(q _e -q _t)	log (q _e -q _t)	t/q _t
3	105.9172	112.7624	6.8452	1.9236	0.0283
5	107.9741	112.7624	4.7883	1.5662	0.0463
7	109.2947	112.7624	3.4677	1.2435	0.0640
10	109.9527	112.7624	2.8098	1.0331	0.0909
15	110.4379	112.7624	2.3245	0.8435	0.1358
20	112.7624	112.7624	0.0000	0.0000	0.1774
25	111.3284	112.7624	1.4340	0.3605	0.2246
30	111.2059	112.7624	1.5565	0.4425	0.2698
35	109.7149	112.7624	3.0475	1.1143	0.3190
40	108.8313	112.7624	3.9312	1.3689	0.3675

Lampiran 16. Data Kinetika Reaksi Orde Satu dan Orde Dua Semu Adsorpsi CR oleh MCM-48 TC

Rumus kinetika orde satu semu

 $ln (q_e-q_t) = -kt + ln q_e$

Dari grafik kinetika orde satu semu senyawa CR diperoleh persamaan garis

y = -0.0172x + 1.3172

 $k_1 = 0,0172 \text{ menit}^{-1}$

- In qe = intercept
- $ln q_e = (1.3172)$
- $q_e = 3.7329 L/mg$

 $R^2 = 0,1472$

Rumus kinetika orde dua semu:

$$t\frac{1}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e}$$

Dari grafik kinetika orde dua semu zat warna MG diperoleh persamaan garis

y = 0.0091x - 0.0005, dimana nilai slope (a) sebesar 0,0091 dan intercept(b) sebesar 0,0005.

Nilai k2 dapat dihitung sebagai berikut:

Orde dua semu:

Slope
$$=\frac{1}{q_e}$$

$$q_e = \frac{1}{Slope}$$

$$q_e = \frac{1}{0,0091}$$

$$q_e = 109.890 \text{ mg/g}$$

$$intercept = \frac{1}{k_2 q_e^2}$$

k2 =
$$\frac{1}{(0,0005) \times (109.890)^2}$$
Waktu (menit)	Waktu (menit) Adsorbansi		C _e (mg/L)	W (g)	Jumlah CR yang diadsorpsi, x/m (mg/g)
3	1.5050	229.9390	47.9390	0.1006	90.4573
5	0.7140	229.9390	23.8232	0.1005	102.5452
7	0.2790	229.9390	10.5610	0.1007	108.9265
10	0.2490	229.9390	9.6463	0.1009	109.1639
15	0.2240	229.9390	8.8841	0.1011	109.3249
20	0.1590	229.9390	6.9024	0.1010	110.4142
25	0.0970	229.9390	5.0122	0.1015	110.8014
30	0.0570	229.9390	3.7927	0.1027	110.1005
35	0.0780	229.9390	4.4329	0.1033	109.1511
40	0.0920	229.9390	4.8598	0.1034	108.8391

Lampiran 17. Penentuan Waktu Optimum Adsorpsi CR oleh MCM-48 C1

$$\frac{x}{m} = \frac{C_o - C_e}{W} V$$

Contoh perhitungan jumlah CR yang diadsorpsi (x/m) pada t = 25 menit dengan volume 0,05 L

$$x/m = \frac{(229.9390-5.0122)\frac{mg}{L}}{0,1015 \text{ g}} \times 0,05 \text{ L}$$

= 110.8014 mg/g

Waktu (menit)	qt (mg/g)	q _e (mg/g)	(q _e -q _t)	log (q _e -q _t)	t/qt
3	90.4573	110.8014	20.3441	3.0128	0.0332
5	102.5452	110.8014	8.2562	2.1110	0.0488
7	108.9265	110.8014	1.8749	0.6285	0.0643
10	109.1639	110.8014	1.6375	0.4932	0.0916
15	109.3249	110.8014	1.4765	0.3897	0.1372
20	110.4142	110.8014	0.3872	-0.9487	0.1811
25	110.8014	110.8014	0.0000	0.0000	0.2256
30	110.1005	110.8014	0.7009	-0.3553	0.2725
35	109.1511	110.8014	1.6503	0.5010	0.3207
40	108.8391	110.8014	1.9623	0.6741	0.3675

Lampiran 18. Data Kinetika Reaksi Orde Satu dan Orde Dua Semu Adsorpsi CR oleh MCM-48 C1

Rumus kinetika orde satu semu

 $ln (q_e-q_t) = -kt + ln q_e$

Dari grafik kinetika orde satu semu senyawa CR diperoleh persamaan garis

y =-0.0478x + 1.5587

 $k_1 = 0,0478 \text{ menit}^{-1}$

- In qe = intercept
- $ln q_e = (1.5587)$
- $q_e = 4.7526 L/mg$

R² = 0,2991

Rumus kinetika orde dua semu:

$$\mathsf{t}_{q_t}^1 = \frac{1}{\mathsf{k}_2 \mathsf{q_e}^2} + \frac{1}{\mathsf{q_e}}$$

Dari grafik kinetika orde dua semu zat warna MG diperoleh persamaan garis

y = 0.0091x + 0.0021, dimana nilai slope (a) sebesar 0,0091 dan intercept (b) sebesar 0,0021.

Nilai k2 dapat dihitung sebagai berikut:

Orde dua semu:

Slope
$$=\frac{1}{q_e}$$

$$q_e = \frac{1}{Slope}$$

$$q_e = \frac{1}{0,0091}$$

$$q_e = 109.8901 \text{ mg/g}$$

$$intercept = \frac{1}{k_2 q_e^2}$$

k2 =
$$\frac{1}{(0,0021) \times (109.8901)^2}$$

Waktu			C	W (a)	Jumlah CR yang
(menit)	Ads	C _o (mg/L)	(mg/L)	(9/	diadsorpsi,
					x/m (mg/g)
3	1.3100	229.9390	41.9939	0.1009	93.1344
5	0.8450	229.9390	27.8171	0.1008	100.2589
7	0.7730	229.9390	25.6220	0.1007	101.4484
10	0.5480	229.9390	18.7622	0.1013	104.2334
15	0.4690	229.9390	16.3537	0.1016	105.1109
20	0.3030	0.3030 229.9390	11.2927	0.1012	108.0268
25	0.2310	229.9390	9.0976	0.1008	109.5444
30	0.2960	229.9390	11.0793	0.1006	108.7772
35	0.3240	229.9390	11.9329	0.1007	108.2453
40	0.1590	229.9390	6.9024	0.1032	108.0604

Lampiran 19. Penentuan Waktu Optimum Adsorpsi CR oleh MCM-48 C2

$$\frac{x}{m} = \frac{C_o - C_e}{W} V$$

Contoh perhitungan jumlah CR yang diadsorpsi (x/m) pada t = 25 menit dengan volume 0,05 L

$$x/m = \frac{(229.9390-9.0976)\frac{mg}{L}}{0,1008 \text{ g}} \times 0,05 \text{ L}$$

= 109.5444 mg/g

Waktu (menit)	qt (mg/g)	q _e (mg/g)	(q _e -q _t)	log (q _e -q _t)	t/qt
3	93.1344	109.5444	16.4100	2.7979	0.0322
5	100.2589	109.5444	9.2855	2.2285	0.0499
7	101.4484	109.5444	8.0960	2.0914	0.0690
10	104.2334	109.5444	5.3110	1.6698	0.0959
15	105.1109	109.5444	4.4335	1.4892	0.1427
20	108.0268	109.5444	1.5175	0.4171	0.1851
25	109.5444	109.5444	0.0000	0.0000	0.2282
30	108.7772	109.5444	0.7672	-0.2651	0.2758
35	108.2453	109.5444	1.2990	0.2616	0.3233
40	108.0604	109.5444	1.4840	0.3948	0.3702

Lampiran 20. Data Kinetika Reaksi Orde Satu dan Orde Dua Semu Adsorpsi CR oleh MCM-48 C2

Rumus kinetika orde satu semu

 $ln (q_e-q_t) = -kt + ln q_e$

Dari grafik kinetika orde satu semu senyawa CR diperoleh persamaan garis

y = -0.0724x + 2.484

 $k_1 = 0,0724 \text{ menit}^{-1}$

In qe = intercept

$$ln q_e = (2.484)$$

 $q_e = 11.9891 L/mg$

$$R^2 = 0,7836$$

Rumus kinetika orde dua semu:

$$\mathsf{t}_{q_t}^1 = \frac{1}{\mathsf{k}_2 \mathsf{q_e}^2} + \frac{1}{\mathsf{q_e}}$$

Dari grafik kinetika orde dua semu zat warna MG diperoleh persamaan garis

y = 0.0091x + 0.0047, dimana nilai slope (a) sebesar 0,0091 dan intercept(b) sebesar 0,0047.

Nilai k2 dapat dihitung sebagai berikut:

Orde dua semu:

Slope
$$=\frac{1}{q_e}$$

$$q_e = \frac{1}{Slope}$$

$$q_e = \frac{1}{0,0091}$$

$$q_e = 109.8901 \text{ mg/g}$$

$$intercept = \frac{1}{k_2 q_e^2}$$

k2 =
$$\frac{1}{(0,0047) \times (109.8901)^2}$$

C₀ (mg/L)	Abs	FP	C _e (mg/L)	Wa (g)	x/m (mg/g)	C _e /q _e	Log C _e	Log q _e
36.1856	0.090		1.3460	0.1012	17.2133	2.1022	0.1290	1.2359
70.9281	0.168		2.1040	0.1022	33.6713	2.1065	0.3230	1.5273
87.6919	0.345		3.8241	0.1017	41.2330	2.1267	0.5825	1.6152
110.7726	0.660		6.8853	0.1012	51.3277	2.1581	0.8379	1.7104
151.5889	1.500		15.0486	0.1007	67.7956	2.2360	1.1775	1.8312
211.8416	1.800	2	35.4568	0.1017	86.7182	2.4429	1.5497	1.9381
254.3586	0.630	10	61.6958	0.1001	96.2352	2.6431	1.7903	1.9833

Lampiran 21. Penentuan Kapasitas Adsorpsi MG oleh MCM-48 TC

$$\frac{x}{m} = \frac{C_o - C_e}{W} V$$

Dimana x/m = jumlah metanil kuning yang diadsorpsi (mg/g)

C_o = konsentrasi metanil kuning sebelum adsorpsi (mg/L)

Ce = konesntrasi metanil kuning setelah adsorpsi (mg/L)

V = volume larutan metanil kuning (L)

W = jumlah adsorben (gram)

Contoh perhitungan jumlah MG yang diadsorpsi (q_e) pada konsentrasi 254.3586 dan volume 0.05 L.

$$\frac{x}{m} = \frac{(254.3586-61.6958)\frac{\text{mg}}{\text{L}}}{0.1001 \text{ g}} \times 0.05 \text{ L}$$

= 96.2352 mg/g

$$\frac{C_{e}}{q_{e}} = \frac{1}{Q_{o}b} + \frac{C_{e}}{Q_{o}}$$

Dimana: Ce = konsentrasi kesetimbangan larutan (mg/L)

qe = jumlah zat yang diadsorpsi per gram adsorben (mg/g)

Qo = kapasitas adsorpsi (mg/g)

b = intensitas adsorpsi (L/mg)

Contoh Perhitungan nilai Qo dan b

Berdasarkan model isoterm Langmuir diperoleh persamaan garis :

y = 0.0091x + 2.0946

Dari persamaan garis tersebut, nilai slope = 0.0091 dan intercept 2.0946

$$slope = \frac{1}{Q_o}$$

$$Q_o = \frac{1}{slope}$$

$$= \frac{1}{0,0091}$$

$$b = \frac{1}{Q_o \times intercept}$$

$$= \frac{1}{109.8901 \text{ mg/g}}$$

$$b = \frac{1}{Q_o \times intercept}$$

$$= 0,0043 \text{ L/mg}$$

2. Persamaan isoterm adsorpsi Freundlich :

$$\log \frac{x}{m} = \log k + \frac{1}{n} \log C_e$$

- Dimana: x = jumlah zat terlarut yang diserap (mg)
 - m = gram adsorben yang digunakan (g)
 - Ce = konsentrasi keseimbangan larutan (mg/L)
 - k = kapasitas adsorpsi (mg/g)
 - n = intensitas adsorpsi (L/g)

Contoh Perhitungan nilai k dan n

Berdasarkan model isoterm Freundlich diperoleh persamaan garis :

y = 0.3995x + 1.3269

Dari persamaan garis tersebut, nilai slope = 0.3995 dan intercept =

1.3269

log k = <i>intercept</i>	$slope = \frac{1}{n}$
k = invers log intercept	$n = \frac{1}{slope}$
$= invers \log^{-1}(1,3269)$	$=\frac{1}{0,3995}$
= 21.2275 mg/g	= 2,5031 g/L

C₀ (mg/L)	Abs	FP	C _e (mg/L)	Wa (g)	x/m (mg/g)	C _e /q _e	Log C _e	Log q _e
62.1817	0.400	10	39.3440	0.1007	11.3395	5.4837	1.5949	1.0546
79.6744	0.535	10	52.4636	0.1003	13.5647	5.8736	1.7199	1.1324
98.3819	0.680	10	66.5549	0.1001	15.8976	6.1885	1.8232	1.2013
122.4344	0.875	10	85.5053	0.1003	18.4093	6.6507	1.9320	1.2650
135.5539	0.985	10	96.1953	0.1008	19.5231	6.9433	1.9832	1.2905
161.7930	1.203	10	117.3810	0.1012	21.9427	7.3734	2.0696	1.3413
184.6307	1.420	10	138.4694	0.1009	22.8748	8.0714	2.1414	1.3594
			X	$C_{o} - C_{e}$				

Lampiran 22. Penentuan Kapasitas Adsorpsi MG oleh MCM-48 C1

$$\frac{x}{m} = \frac{C_{o} - C_{e}}{W} V$$

Dimana x/m = jumlah metanil kuning yang diadsorpsi (mg/g)

Co = konsentrasi metanil kuning sebelum adsorpsi (mg/L)

Ce = konesntrasi metanil kuning setelah adsorpsi (mg/L)

V = volume larutan metanil kuning (L)

W = jumlah adsorben (gram)

Contoh perhitungan jumlah MG yang diadsorpsi (x/m) pada konsentrasi 184.6307 dan volume 0.05 L.

$$\frac{x}{m} = \frac{(184.6307 - 138.4694)\frac{\text{mg}}{\text{L}}}{0.1009 \text{ g}} \times 0.05 \text{ L}$$
$$= 22.8748 \text{ mg/g}$$

$$\frac{C_{e}}{q_{e}} = \frac{1}{Q_{o}b} + \frac{C_{e}}{Q_{o}}$$

Dimana: Ce = konsentrasi kesetimbangan larutan (mg/L)

 q_e = jumlah zat yang diadsorpsi per gram adsorben (mg/g)

Q₀ = kapasitas adsorpsi (mg/g)

b = intensitas adsorpsi (L/mg)

Contoh Perhitungan nilai Qo dan b

Berdasarkan model isoterm Langmuir diperoleh persamaan garis :

y = 0.0252x + 4.506

Dari persamaan garis tersebut, nilai slope = 0.0252 dan intercept 4.506

$$slope = \frac{1}{Q_o}$$

$$Q_o = \frac{1}{slope}$$

$$= \frac{1}{0,0252}$$

$$intercept = \frac{1}{Q_o b}$$

$$b = \frac{1}{Q_o x intercept}$$

$$= \frac{1}{39.6825 \text{ mg/g}}$$

$$= 0,0055 \text{ L/mg}$$

2. Persamaan isoterm adsorpsi Freundlich:

$$\log \frac{x}{m} = \log k + \frac{1}{n} \log C_e$$

- Dimana: x = jumlah zat terlarut yang diserap (mg)
 - m = gram adsorben yang digunakan (g)
 - Ce = konsentrasi keseimbangan larutan (mg/L)
 - k = kapasitas adsorpsi (mg/g)
 - n = intensitas adsorpsi (L/g)

Contoh Perhitungan nilai k dan n

Berdasarkan model isoterm Freundlich diperoleh persamaan garis :

y = 0.5735x + 0.1483

Dari persamaan garis tersebut, nilai slope = 0.5735 dan intercept =0.1483

log k = intercept
$$slope = \frac{1}{n}$$
k = invers log intercept $n = \frac{1}{slope}$ = invers log⁻¹ (0.1483) $= \frac{1}{0.5735}$ = 1.4070 mg/g $= 1.7436 \text{ g/L}$

C₀ (mg/L)	Abs	FP	C₌ (mg/L)	Wa (g)	x/m (mg/g)	C _e /q _e	Log C _e	Log q _e
36.1856	1.380		13.8824	0.1004	11.1072	3.2579	1.1425	1.0456
73.3576	0.830	5	40.8017	0.1012	16.0849	4.5606	1.6107	1.2064
82.3469	0.975	5	47.8474	0.1009	17.0959	4.8168	1.6799	1.2329
98.8678	1.280	5	62.6676	0.1006	17.9921	5.4951	1.7970	1.2551
111.2585	1.480	5	72.3858	0.1003	19.3782	5.7414	1.8597	1.2873
119.2760	1.625	5	79.4315	0.1012	19.6860	6.0589	1.9000	1.2942
137.0117	1.950	5	95.2235	0.1015	20.5853	6.6558	1.9787	1.3136

Lampiran 23. Penentuan Kapasitas Adsorpsi MG oleh MCM-48 C2

$$\frac{x}{m} = \frac{C_o - C_e}{W} V$$

Dimana x/m = jumlah metanil kuning yang diadsorpsi (mg/g)

Co = konsentrasi metanil kuning sebelum adsorpsi (mg/L)

Ce = konesntrasi metanil kuning setelah adsorpsi (mg/L)

V = volume larutan metanil kuning (L)

W = jumlah adsorben (gram)

Contoh perhitungan jumlah MG yang diadsorpsi (x/m) pada konsentrasi 137.0117dan volume 0.05 L.

$$\frac{x}{m} = \frac{(137.0117 - 95.2235)\frac{\text{mg}}{\text{L}}}{0.1015 \text{ g}} \times 0.05 \text{ L}$$
$$= 20.5853 \text{ mg/g}$$

$$\frac{C_{e}}{q_{e}} = \frac{1}{Q_{o}b} + \frac{C_{e}}{Q_{o}}$$

Dimana: Ce = konsentrasi kesetimbangan larutan (mg/L)

 q_e = jumlah zat yang diadsorpsi per gram adsorben (mg/g)

Qo = kapasitas adsorpsi (mg/g)

b = intensitas adsorpsi (L/mg)

Contoh Perhitungan nilai Qo dan b

Berdasarkan model isoterm Langmuir diperoleh persamaan garis :

y = 0.0413x + 2.7906

Dari persamaan garis tersebut, nilai slope = 0.0413 dan intercept=2.7906

$$slope = \frac{1}{Q_o}$$

$$Q_o = \frac{1}{slope}$$

$$= \frac{1}{0.0413}$$

$$b = \frac{1}{Q_o \times intercept}$$

$$= \frac{1}{24.2130 \text{ mg/g}}$$

$$b = \frac{1}{Q_o \times intercept}$$

$$= 0.0147 \text{ L/mg}$$

2. Persamaan isoterm adsorpsi Freundlich:

$$\log \frac{x}{m} = \log k + \frac{1}{n} \log C_e$$

- Dimana: x = jumlah zat terlarut yang diserap (mg)
 - m = gram adsorben yang digunakan (g)
 - Ce = konsentrasi keseimbangan larutan (mg/L)
 - k = kapasitas adsorpsi (mg/g)
 - n = intensitas adsorpsi (L/g)

Contoh Perhitungan nilai k dan n

Berdasarkan model isoterm Freundlich diperoleh persamaan garis :

y = 0.3237x + 0.6805

Dari persamaan garis tersebut, nilai slope = 0.3237 dan intercept = 0.6805

log k = intercept
$$slope = \frac{1}{n}$$
k = invers log intercept $n = \frac{1}{slope}$ = invers log⁻¹ (0.6805) $= \frac{1}{0,3237}$ = 4.7918 mg/g $= 3.0892$ g/L

C。 (mg/L)	Abs	C _e (mg/L)	Wa (g)	x/m (mg/g)	C _e /q _e	Log C _e	Log q _e				
166.6890	0.025	2.8171	0.1013	80.8845	2.0608	0.4498	1.9079				
206.3232	0.037	3.1829	0.1018	99.7742	2.0679	0.5028	1.9990				
244.1280	0.075	4.3415	0.1017	117.8892	2.0708	0.6376	2.0715				
264.2500	0.275	10.4390	0.1002	126.6522	2.0864	1.0187	2.1026				
331.3232	0.350	12.7256	0.1008	158.0345	2.0965	1.1047	2.1988				
383.1524	0.430	15.1646	0.1009	182.3527	2.1012	1.1808	2.2609				
471.5671	0.485	16.8415	0.1021	222.6864	2.1176	1.2264	2.3477				
566.0793	0.706	23.5793	0.1017	266.7158	2.1224	1.3725	2.4260				
	$X = C_0 - C_{e_xy}$										

Lampiran 24. Penentuan Kapasitas Adsorpsi CR oleh MCM-48 TC

$$\frac{x}{m} = \frac{C_o - C_e}{W} V$$

Dimana x/m = jumlah metanil kuning yang diadsorpsi (mg/g)

C₀ = konsentrasi metanil kuning sebelum adsorpsi (mg/L)

Ce = konesntrasi metanil kuning setelah adsorpsi (mg/L)

V = volume larutan metanil kuning (L)

W = jumlah adsorben (gram)

Contoh perhitungan jumlah CR yang diadsorpsi (q_e) pada konsentrasi 566.0793 dan volume 0.05 L.

$$\frac{x}{m} = \frac{(566.0793 - 23.5793)\frac{\text{mg}}{\text{L}}}{0.1017 \text{ g}} \times 0.05 \text{ L}$$

= 266.7158 mg/g

$$\frac{C_{e}}{q_{e}} = \frac{1}{Q_{o}b} + \frac{C_{e}}{Q_{o}}$$

Dimana: Ce = konsentrasi kesetimbangan larutan (mg/L)

qe = jumlah zat yang diadsorpsi per gram adsorben (mg/g)

Qo = kapasitas adsorpsi (mg/g)

b = intensitas adsorpsi (L/mg)

Contoh Perhitungan nilai Qo dan b

Berdasarkan model isoterm Langmuir diperoleh persamaan garis :

y = 0.003x + 2.0567

Dari persamaan garis tersebut, nilai slope = 0.003 dan intercept 2.0567

$$slope = \frac{1}{Q_o}$$

$$Q_o = \frac{1}{slope}$$

$$= \frac{1}{0,003}$$

$$b = \frac{1}{Q_o \times intercept}$$

$$= \frac{1}{333.3333 \times 2.0567}$$

$$= 0,0014 L/mg$$

4. Persamaan isoterm adsorpsi Freundlich:

$$\log \frac{x}{m} = \log k + \frac{1}{n} \log C_e$$

- Dimana: x = jumlah zat terlarut yang diserap (mg)
 - m = gram adsorben yang digunakan (g)
 - Ce = konsentrasi keseimbangan larutan (mg/L)
 - k = kapasitas adsorpsi (mg/g)
 - n = intensitas adsorpsi (L/g)

Contoh Perhitungan nilai k dan n

Berdasarkan model isoterm Freundlich diperoleh persamaan garis :

$$y = 0.4709x + 1.7232$$

Dari persamaan garis tersebut, nilai slope=0.4709 dan intercept = 1.7232

log k = <i>intercept</i>	$slope = \frac{1}{n}$
k = invers log intercept	$n = \frac{1}{slope}$
= <i>invers</i> log ⁻¹ (1,7232)	$=\frac{1}{0,4709}$
= 52.8688 mg/g	= 2,4384 g/L

C。 (mg/L)	Abs	FP	C _e (mg/L)	Wa (g)	x/m (mg/g)	C _e /q _e	Log C _e	Log q _e
178.2744	0.047		3.4878	0.1002	87.2189	2.0440	0.5426	1.9406
194.1280	0.069		4.1585	0.1006	94.4182	2.0560	0.6189	1.9751
220.3476	0.112		5.4695	0.1006	106.7982	2.0632	0.7379	2.0286
256.6280	0.302		11.2622	0.1009	121.5886	2.1106	1.0516	2.0849
314.5549	0.570		19.4329	0.1015	145.3803	2.1637	1.2885	2.1625
383.1524	1.380		44.1280	0.1008	168.1669	2.2784	1.6447	2.2257
444.1280	1.210	2	75.8354	0.1013	181.7832	2.4432	1.8799	2.2596
550.8354	1.520	2	94.7378	0.1023	222.9216	2.4710	1.9765	2.3482

Lampiran 25. Penentuan Kapasitas Adsorpsi CR oleh MCM-48 C1

$$\frac{x}{m} = \frac{C_{o} - C_{e}}{W} V$$

Dimana x/m = jumlah metanil kuning yang diadsorpsi (mg/g)

Co = konsentrasi metanil kuning sebelum adsorpsi (mg/L)

Ce = konesntrasi metanil kuning setelah adsorpsi (mg/L)

V = volume larutan metanil kuning (L)

W = jumlah adsorben (gram)

Contoh perhitungan jumlah CR yang diadsorpsi (x/m) pada konsentrasi 550.8354 dan volume 0.05 L.

$$\frac{x}{m} = \frac{(550.8354 - 94.7378)\frac{\text{mg}}{\text{L}}}{0.1023 \text{ g}} \times 0.05 \text{ L}$$
$$= 222.9216 \text{ mg/g}$$

$$\frac{C_{e}}{q_{e}} = \frac{1}{Q_{o}b} + \frac{C_{e}}{Q_{o}}$$

Dimana: Ce = konsentrasi kesetimbangan larutan (mg/L)

 q_e = jumlah zat yang diadsorpsi per gram adsorben (mg/g)

Q₀ = kapasitas adsorpsi (mg/g)

b = intensitas adsorpsi (L/mg)

Contoh Perhitungan nilai Qo dan b

Berdasarkan model isoterm Langmuir diperoleh persamaan garis :

y = 0.0048x + 2.0474

Dari persamaan garis tersebut, nilai slope = 0.0048 dan intercept 2.0474

$$slope = \frac{1}{Q_o}$$

$$intercept = \frac{1}{Q_ob}$$

$$Q_o = \frac{1}{slope}$$

$$b = \frac{1}{Q_o \times intercept}$$

$$= \frac{1}{0,0048}$$

$$= \frac{1}{208.3333 \times 2.0474}$$

$$= 208.3333 \text{ mg/g}$$

$$= 0,0023 \text{ L/mg}$$

6. Persamaan isoterm adsorpsi Freundlich:

$$\log \frac{x}{m} = \log k + \frac{1}{n} \log C_e$$

- Dimana: x = jumlah zat terlarut yang diserap (mg)
 - m = gram adsorben yang digunakan (g)
 - Ce = konsentrasi keseimbangan larutan (mg/L)
 - k = kapasitas adsorpsi (mg/g)
 - n = intensitas adsorpsi (L/g)

Contoh Perhitungan nilai k dan n

Berdasarkan model isoterm Freundlich diperoleh persamaan garis :

y = 0.2513x + 1.8222

Dari persamaan garis tersebut, nilai slope = 0.2513 dan intercept = 1.8222

log k = intercept
$$slope = \frac{1}{n}$$
k = invers log intercept $n = \frac{1}{slope}$ = invers log⁻¹ (1.8222) $= \frac{1}{0.2513}$ = 66.4048 mg/g=3.9793 g/L

C₀ (mg/L)	Abs	F P	C _e (mg/L)	Wa (g)	x/m (mg/g)	C _e /q _e	Log Ce	Log q _e
178.2744	0.090	-	4.7988	0.1004	86.3922	2.0635	0.6811	1.9365
194.1280	0.109	-	5.3780	0.1017	92.7974	2.0920	0.7306	1.9675
220.3476	0.280	-	10.5915	0.1008	104.0457	2.1178	1.0250	2.0172
256.6280	0.357	-	12.9390	0.1011	120.5188	2.1294	1.1119	2.0811
314.5549	0.835	-	27.5122	0.1008	142.3823	2.2092	1.4395	2.1535
383.1524	1.255	2	78.5793	0.1000	152.2866	2.5160	1.8953	2.1827
444.1280	1.600	2	99.6159	0.1024	168.2188	2.6402	1.9983	2.2259
550.8354	1.170	5	180.4085	0.1008	183.7435	2.9979	2.2563	2.2642

Lampiran 26. Penentuan Kapasitas Adsorpsi CR oleh MCM-48 C2

$$\frac{x}{m} = \frac{C_o - C_e}{W} V$$

Dimana x/m = jumlah metanil kuning yang diadsorpsi (mg/g)

C_o = konsentrasi metanil kuning sebelum adsorpsi (mg/L)

Ce = konesntrasi metanil kuning setelah adsorpsi (mg/L)

V = volume larutan metanil kuning (L)

W = jumlah adsorben (gram)

Contoh perhitungan jumlah CR yang diadsorpsi (x/m) pada konsentrasi 550.8354 dan volume 0.05 L.

$$\frac{x}{m} = \frac{(550.8354 - 180.4085)\frac{\text{mg}}{\text{L}}}{0.1008 \text{ g}} \times 0.05 \text{ L}$$
$$= 183.7435 \text{ mg/g}$$

$$\frac{C_{e}}{q_{e}} = \frac{1}{Q_{o}b} + \frac{C_{e}}{Q_{o}}$$

Dimana: $C_e = konsentrasi kesetimbangan larutan (mg/L)$

qe = jumlah zat yang diadsorpsi per gram adsorben (mg/g)

Qo = kapasitas adsorpsi (mg/g)

b = intensitas adsorpsi (L/mg)

Contoh Perhitungan nilai Qo dan b

Berdasarkan model isoterm Langmuir diperoleh persamaan garis :

y = 0.0054x + 2.0641

Dari persamaan garis tersebut, nilai slope = 0.0054 dan intercept=2.0641

$$slope = \frac{1}{Q_o}$$

$$Q_o = \frac{1}{slope}$$

$$= \frac{1}{0,0054}$$

$$b = \frac{1}{Q_o \times intercept}$$

$$= \frac{1}{185.1851 \text{ mg/g}}$$

$$b = \frac{1}{Q_o \times intercept}$$

$$= 0,0026 \text{ L/mg}$$

8. Persamaan isoterm adsorpsi Freundlich:

$$\log \frac{x}{m} = \log k + \frac{1}{n} \log C_e$$

- Dimana: x = jumlah zat terlarut yang diserap (mg)
 - m = gram adsorben yang digunakan (g)
 - Ce = konsentrasi keseimbangan larutan (mg/L)
 - k = kapasitas adsorpsi (mg/g)
 - n = intensitas adsorpsi (L/g)

Contoh Perhitungan nilai k dan n

Berdasarkan model isoterm Freundlich diperoleh persamaan garis :

y = 0.1987x + 1.8269

Dari persamaan garis tersebut, nilai slope = 0.1987 dan intercept = 1.8269

log k = intercept
$$slope = \frac{1}{n}$$
k = invers log intercept $n = \frac{1}{slope}$ = invers log⁻¹ (1.8269) $= \frac{1}{0,1987}$ = 67.1274 mg/g=5.0327 g/L

Lampiran 27. Persen Efektivitas Adsorpsi Limbah Zat Warna MG dan CR

1. Persen Adsorpsi Limbah MG dan CR oleh MCM-48

Data limbah zat warna MG dan CR yang diukur pada Panjang gelombang zat warna MG yaitu 617 nm dan pada waktu optimum MG.

Sampel	Abs.	а	b	Co (mg/L)	Ce (mg/L)	% Efektivitas
TC	0.022	0.1029	0.0485	36.565	0.6851	98.1262
C1	0.566	0.1029	0.0485	36.565	5.9718	83.6678
C2	1.38	0.1029	0.0485	36.565	13.8824	62.0332

$$q \% = \frac{C_{awal}-C_{akhir}}{C_{awal}} \times 100$$

Contoh perhitungan % kapasitas adsorpsi limbah zat warna MG dan CR yang diadsorpsi dengan perbandingan 1:1 untuk sampel MCM-48 TC.

$$q \% = \frac{36.565 \cdot 0.6851}{36.565} \times 100$$
$$= 98.1262$$

2. Persen Adsorpsi Limbah MG dan CR oleh MCM-48

Data limbah zat warna MG dan CR yang diukur pada Panjang gelombang zat warna CR yaitu 496 nm dan pada waktu optimum CR.

Sampel	Abs.	а	b	Co (mg/L)	Ce (mg/L)	% Efektivitas
TC	0.016	0.0328	0.0674	157.378	2.5427	98.3843
C1	0.068	0.0328	0.0674	157.378	4.1280	97.3770
C2	0.106	0.0328	0.0674	157.378	5.2866	96.6408

$$q \% = \frac{C_{awa}I - C_{akhir}}{C_{awal}} \times 100$$

Contoh perhitungan % kapasitas adsorpsi limbah zat warna MG dan CR yang diadsorpsi dengan perbandingan 1:1 untuk sampel MCM-48 TC.

$$q \% = \frac{157.378 - 2.5427}{157.378} \times 100$$
$$= 98.3843$$

LAMPIRAN 28. Desorpsi

1. Data persen desorpsi zat warna MG

Data desorpsi diperoleh setelah dilakukan adsorpsi pada zat warna MG. Proses adsorpsi dilakukan dengan menggunakan konsentrasi awal 171.511 mg/L dan konsetrasi akhir sebesar 1.326 mg/L dengan berat sampel 1.5202 gram. Jumlah yang diadsorpsi sebesar **22.389 mg/g**. Dalam proses desorpsi digunakan akuades sebagai agen pendesorpsi dengan suhu divariasikan.

Suhu	X (gram) akhir	X(gram) awal	q _e adsorpsi
70	0.1521	1.5202	2.24016
60	0.154	1.5202	2.26814
50	0.1526	1.5202	2.24752
40	0.1559	1.5202	2.29612
30	0.156	1.5202	2.29760

$$q_{eakhir} (mg/g) = \frac{X_{akhir} (g)}{X_{awal} (g)} \times jumlah MG yang diadsorpsi (mg/g)$$

Contoh perhitungan jumlah zat warna MG yang diadsorpsi (qe) pada 0.1521 g sampel.

$$q_{e akhir} (mg/g) = \frac{0.1521 \text{ g}}{1.5202 \text{ g}} \times 22.389 \text{ mg/g}$$

= 2.24016 mg/g

Suhu	Stlah De	esorbsi	a Docorb	Rasio Desorbsi (%)
	Abs.	Kons.	de Desorb	
70	0.168	2.1040	0.6916	30.8749
60	0.094	1.3848	0.4496	19.8234
50	0.088	1.3265	0.4346	19.3388
40	0.081	1.2585	0.4036	17.5786
30	0.071	1.1613	0.3722	16.2004

$$q_{e,desorp}(mg/g) = V\left(\frac{C_f}{M}\right)$$

Contoh perhitungan jumlah zat warna MG yang didesorpsi (qe) pada konsentrasi 2.1040 mg/L, volume 0.05 L dan pada 0.1521 g sampel.

$$q_{e} = \frac{(2.1040)\frac{mg}{L}}{0,1521 \text{ g}} \times 0,05 \text{ L}$$
$$= 0.6916 \text{ mg/g}.$$

% Rasio desorpsi= $\frac{\text{jumlah zat warna yang didesorpsi}}{\text{jumlah zat warna yang teradsorpsi}} \times 100$

> Contoh menghitung rasio desorpsi pada suhu 70 °C

% Rasio desorpsi =
$$\frac{0.6916 \text{ mg/g}}{2.24016 \text{ mg/g}} \times 100$$

= 30,8749

2. Data persen desorpsi zat warna CR

Data desorpsi diperoleh setelah dilakukan adsorpsi pada zat warna CR. Proses adsorpsi dilakukan dengan menggunakan konsentrasi awal 931.932 mg/L dan konsetrasi akhir sebesar 5.256 mg/L dengan berat sampel 2.0003 gram. Jumlah yang diadsorpsi sebesar **185.307 mg/g**. Dalam proses desorpsi digunakan akuades sebagai agen pendesorpsi dengan suhu divariasikan.

Suhu	X (gram) akhir	X(gram) awal	qe Adsorpsi
70	0.1505	2.0003	13.9423
60	0.1512	2.0003	14.0072
50	0.1511	2.0003	13.9979
40	0.152	2.0003	14.0813
30	0.1568	2.0003	14.5259

$$q_{e akhir}(mg/g) = \frac{X_{akhir}(g)}{X_{awal}(g)} \times jumlah MG yang diadsorpsi (mg/g)$$

Contoh perhitungan jumlah zat warna MG yang diadsorpsi (qe) pada 0.1505 g sampel.

$$q_{e akhir} (mg/g) = \frac{0.1505 \text{ g}}{2.0003 \text{ g}} \times 185.307 \text{ mg/g}$$

=13.9423 mg/g

Suhu	Stlah De	esorbsi	a Docorb	Rasio Desorb (%)
	Abs.	Kons.	de Desorb	
70	0.16	6.9329	2.3033	16.52
60	0.108	5.3476	1.7684	12.62
50	0.095	4.9512	1.6384	11.70
40	0.079	4.4634	1.4682	10.43
30	0.053	3.6707	1.1705	8.06

$$q_{e,desorp}(mg/g) = V\left(\frac{C_f}{M}\right)$$

Contoh perhitungan jumlah zat warna MG yang didesorpsi (qe) pada konsentrasi 13.9423 mg/L, volume 0.05 L dan pada 0.1505 g sampel.

$$q_{e} = \frac{(13.9423)\frac{mg}{L}}{0,1505 \text{ g}} \times 0,05 \text{ L}$$
$$= 2.3033 \text{ mg/g}.$$

% Rasio desorpsi= $\frac{\text{jumlah zat warna yang didesorpsi}}{\text{jumlah zat warna yang teradsorpsi}} \times 100$

> Contoh menghitung rasio desorpsi pada suhu 70 °C

% Rasio desorpsi = $\frac{2.3033 \text{ mg/g}}{13.9423 \text{ mg/g}} \times 100$ = 16.52