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Abstract: The effects of anodized titanium (Ti) with a potential hydrogen fluoride (HF) acid pretreat-
ment through cathodization on the formation of nano-porous Ti dioxide (TiO2) layer were character-
ized using field-emission scanning electron microscopy, grazing incidence X-ray diffractometer, and
contact angle goniometer. The biocompatibility was determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide (MTT) test. Analytical results found that a well-aligned nano-porous
structure was formed on the anodized Ti surface with HF pretreatment concentration above 0.5%.
Microstructure of the nano-porous Ti dioxide surface generated by anodization with HF pretreatment
was composed of anatase and rutile phases, while the anodized Ti sample with HF pretreatment
concentration of 0.5% presented excellent hydrophilicity surface. An in-vitro biocompatibility also
indicated that osteoblast cells grown on the surface of the anodized Ti sample with HF pretreat-
ment increased with the increase of culture time. The filopodia of osteoblast cells not only adhered
flat, but also tightly grabbed the nano-porous structure for promoting cell adhesion and prolifera-
tion. Therefore, the anodized Ti with HF pretreatment can form a functionalized surface with great
biocompatibility for biomedical applications, particularly for dental implants.
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1. Introduction

Demand for biomaterials in biomedical applications such as orthopedics and dental
implants is increasing rapidly [1,2]. Titanium (Ti) is well-known as a biomaterial with
excellent mechanical strength, resistance to body fluid effect, and biocompatibility [1–5].
However, Ti still needs to be modified through surface treatment to supply fast and
durable osseointegration used in the human body [2]. The fundamental of osseointegration
requires the ability of an implant to bond with the surrounding host bone [2,6]. Hence,
the characteristics of the implant surface such as, topography, chemical composition, and
surface energy will have an impact on cell interactions with the surrounding tissue of the
implant [3,6].

Various surface modification methods were performed on Ti implants to obtain a
more biocompatible surface [5,6]. Recent studies indicated that plasma electrolytic oxi-
dation (PEO) is a promising anodization technique to modify metal surfaces [7,8]. These
PEO modified surfaces provide suitable conditions for cell attachment, proliferation and
antibacterial. Moreover, Yanovska et al. [9] reported that hydroxyapatite (HA) coatings
can be formed on Ti alloy surface using a potential thermal deposition technique. HA
coating makes surfaces more osteoconductive due to increasing collagen synthesis, while
the latest research by Lan et al. [10] also proved that the anodized Ti with a hierarchical
porous (micro and nano-porous) surface possessed great potential to enhance osteoblast
cell adhesion ability. The anodized surface played an important role to promote osteoblast
cells ingrowth into the nano-porous structure, which provided cell adhesion ability for
enhancing osseointegration. Therefore, anodization is one of the potential modification
methods of implants with several advantages, such as producing numerous surface mor-
phologies, generating beneficial chemical species obtained from electrolytes used during
the anodization process, adaptability to various implant shapes, and easy application in
the biomedical fields [2,4,5].

In the present study, the anodization method is performed as a surface modification of
Ti yet accompanied by pretreatment with different concentrations of hydrogen fluoride (HF)
to determine which of these concentrations is effective in increasing the biocompatibility
of Ti. The in vitro biocompatibility is evaluated by culturing with osteoblast cell because
osteoblasts are known to play a crucial role in osseointegration [11]. In addition, the surface
properties and microstructural characteristics were also investigated to understand the
relationship between cellular adhesion behavior and anodized Ti surface in this study.

2. Materials and Methods
2.1. Materials Preparation

The biomedical grade-IV pure Ti sheet (obtained from Bio Tech One Inc., Kaohsiung,
Taiwan) with a thickness of 1 mm served as the substrate in the present study. The sample
was prepared as discs (10 mm in diameter) to perform the experiment analysis. The samples
were mechanically ground and polished with 1500 grit paper, followed by 1 µm diamond
abrasive, and finished with 0.04 µm colloidal silica abrasive. Prior to use, the samples were
cleaned of various impurities and contaminants that remained from the machining process
by being ultrasonically washed with acetone at 25 ◦C for 5 min and etched in a mixture
solution of 2% ammonium fluoride (NH4F), 2% HF acid, and 10% nitric acid (HNO3) at
25 ◦C for 1 min. Afterwards, the samples were washed using distilled water in an ultrasonic
bath at 25 ◦C for 10 min. Subsequently, the platinum bar with a diameter of 2.5 cm was
placed in front of the samples at a distance of 2 cm to act as a cathode under constant
current with current density of 1 A/dm2 for 10 min in different concentrations (0.01%,
0.05%, 0.1%, 0.5%, 1%, and 2%) of 1 M aqueous electrolyte HF solution, respectively. After
cathodic pretreatment, the sample was anodized in sodium hydroxide (NaOH) solution.
The anodization process was performed with magnetic stirring under a constant current of
15 A/dm2 for 10 min at 25 ◦C. Finally, the investigated samples were cleaned, rinsed with
deionized water, and air-dried. The polished Ti disc without treatment acted as control
for comparison.
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2.2. Analysis of Surface Property

The sample was positioned on the copper holder and the surface was sputter-coated
using platinum thin film with a thickness of 25 nm before loading into the vacuum chamber
in order to provide an electrical conductivity. Subsequently, the surface morphology of the
sample was determined by field-emission scanning electron microscope (FE-SEM; JEOL
JSM6400, Tokyo, Japan) operating at 20 kV. The phase composition and crystallinity of the
sample were analyzed by grazing incidence X-ray diffractometer (GIXRD; PHILIPS X’Pert
Pro, Almelo, Netherlands) equipped with Cu Kα radiation source operated at 50 kV and
250 mA. The corresponding peaks of GIXRD spectrum were investigated according to the
database from the Joint Committee on Powder Diffraction Standards.

2.3. Wettability Testing

The wettability of the sample was analyzed using static method by measuring the
angle produced from the tangent line between the liquid drop and the surface of the sample
(n = 5). Static method was carried out by dropping a 0.05 mL deionized water droplet onto
the surface of the investigated sample (the distance of dropping was maintained constant
at 10 mm), and subsequently, droplet profile inspected by goniometer (GBX Scientific LTD.,
Romans-sur-Isère, France).

2.4. Biocompatibility Evaluation

The osteoblast cell line (MG-63, ATCC-CRL1427) was obtained from the Bioresource
Collection and Research Center, Hsinchu, Taiwan. The MG-63 cell line was maintained in
Dulbecco’s Modified Eagle medium (DMEM; Gibco, Waltham, MA, USA) containing 10%
fetal bovine serum (FBS), and antibiotic solution (1% penicillin-streptomycin). The cells
were incubated at 37 ◦C with an atmosphere of 5% CO2 and 95% air. The cells were detached
through trypsinization after the cell reach 90% confluency. The investigated samples (n = 5)
were sterilized by washing in acetone for 15 min, soaking in ethanol for 15 min, air dried,
and followed by exposure to ultraviolet lamp at room temperature for 24 h. The sterilized
samples were placed in 24-well plates, inoculated with MG-63 cell at cell density of 1 × 104

cells/well, and incubated at 37 ◦C for 8 h, 1 day, and 3 days, respectively. The 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT; Sigma, Taipei, Taiwan) test
was used to verified cellular growth on the samples. After 8 h, 1 day, and 3 days of MG-63
cell cultivation with investigated samples, 50 mL of MTT-dissolved in culture medium
was added to the well plates and incubated for 4 h at 37 ◦C to form the formazan crystals.
The medium containing MTT was removed, formazan crystals were dissolved in 150 mL
dimethyl sulfoxide (DMSO, Sigma, Taipei, Taiwan), and quantified spectrophotometrically
using an Epoch microplate reader (BioTek instruments Inc., Winooski, VT, USA) at the
wavelength of 595 nm. Moreover, the morphology and colonization of MG-63 cells on
sample surface after 48 h incubation were observed through the JSM-6500 FE-SEM operated
at 25 kV.

2.5. Statistical Analysis

The experimental data were analyzed via SPSS statistic software (Version 19.0., SPSS
Inc., Chicago, IL, USA). The difference between multiple groups were determined by
one-way analysis of variance followed by Tukey’s HSD post hoc test. A p value of less than
0.05 was indicated as statistically significant.

3. Results
3.1. Morphology of the Investigated Samples

The surface morphology of the polished Ti, anodized Ti (A-Ti), and anodized Ti
with cathodization pretreatment (AC-Ti) of various concentrations of HF are shown in
Figure 1. Figure 1a presents surface morphology of the sample without any treatment with
smooth machining polished Ti. Figure 1b depicts micro-porosity of the surface sample
treated with anodization only. The nano-porous structure was generated on the surface of
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the sample (Figure 1c–f), which previously received HF treatment through cathodization
before anodization. It was found that an irregular nano-porous structure was formed
on the sample surface as the HF concentration below 0.1%. However, the formation of a
well-aligned nano-porous structure can be seen on the surface of the AC-Ti with 0.5% HF
sample. A similar feature could also be found in the AC-Ti with 1.0% and 2.0% HF samples.
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3.2. Microstructure of the Investigated Samples

The GIXRD pattern of the investigated sample as shown in Figure 2. Only the α-Ti
peaks with a hexagonal crystalline structure were observed on the control sample. When Ti
sample was subjected to anodization with HF pretreatment, the anatase (A-TiO2) and rutile
(R-TiO2) crystalline structure peaks were detected on the surface of the treated samples.
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3.3. Wettability of the Investigated Samples

Figure 3 illustrates the average contact angle measurements of the investigated sam-
ples. Apparently, all measured contact angles are lower than 90◦, which means that treated
Ti surfaces are hydrophilic. However, the sample pretreated with 0.5% HF exhibited a
smaller contact angle, indicating a higher hydrophilic surface than others sampled.
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3.4. Cell Response and Adhesion Behavior of the Investigated Samples

The biocompatibility of the investigated samples, cultured with MG-63 cell, is dis-
played in Figure 4. According to the MG-63 cells growth result on the Ti surface treated
with different conditions, it was found that the number of cells increased as the culture time
increasing. No significant difference can be observed between the investigated samples at
8 h and day 1, while the AC-Ti with 2.0% HF sample exhibited a higher number of MG-63
cells grown on the surface as compared with other treated samples at day 3.

Figure 5 presents the FE-SEM images of MG-63 cells cultured for 48 h on the surface of
Ti treated with different conditions. It is clearly seen that the cells did not have any changes
in the cell morphology due to the control Ti surface without HF pretreatment. However,
both samples pretreated with 0.5% and 2.0% HF showed more elongated filopodia than the
Ti sample without HF pretreatment. In addition, the filopodia of cells not only adhered flat,
but also tightly grabbed the nano-porous structure surface (as indicated by arrows). This
cell response characteristic could also be observed in other HF pretreated samples.
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4. Discussion

Surface modification of Ti implant greatly affected the success rate of implant place-
ment. Since the nano-surface is known to have a necessary effect in promoting the living-cell
response, the living cell can adhere, differentiate, grow, and regenerate the tissue on the
Ti surface, and various surface modifications are made to the Ti surface to optimize its
acceptability on the host and not cause multiple infections after implantation [12–17]. In
the present study, the Ti surface was modified through chemical modification with anodiza-
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tion treatment preceded by cathodization using HF, which would produce nano-porous
surfaces on the Ti. Without pretreatment, anodization will only produce microporous
on the Ti surface, which is formed from immersion with NaOH at high temperatures
for a long time [10,18–20]. Several studies have shown that anodization can produce a
nano-surface [21,22]. Our previous study [10] also demonstrated that the Ti subjected to
the HF pretreatment with different current densities showed the formation of a hierarchical
porous (micro and nano-porous) surface. In the study with different concentrations of HF
pretreatment, the results reveal that the Ti hydride sacrificial layer has melted away to pro-
duce nano-holes, and the Ti metal is anodized to achieve a TiO2 layer. The outcome of the
oxide layer has anatase and rutile phases, which play a vital role in forming nano-porous
TiO2 [23].

A surface has a good wettability if the surface is hydrophilic characterized by a contact
angle that is smaller than 90◦ [24,25]. All investigated samples in this study showed a
contact angle below 90◦. However, it was found that the sample with 0.5% HF pretreatment
showed superior hydrophilic performance with a contact angle of about 13◦. This feature
can be attributed that the surface with a well-aligned nano-porous structure can generate a
larger surface free energy formation [26–28]. It is well known that the surface free energy
related to the surface wettability. Accordingly, the rising effective surface area that will
increase the hydrophilicity of the surface [1,26]. Good wettability will have an impact on
the absorption of biological fluids, proteins, and cells on the Ti surface, as well as affecting
cell morphology, adhesions, and proliferation [21,29,30].

Osteoblasts have been used to measure the biocompatibility of a material to be used
as an implant since osteoblasts play a crucial role in bone regeneration. The MTT results
indicated that the number of osteoblast cells adhering to the treated Ti surface increased
with increasing culture time. In addition, the high concentration of HF proves better for
osteoblast cell growth. This phenomenon occurs because HF has dose-dependent effects
on osteoblast cell proliferation [31–33]. Moreover, Pham et al. [34] also found that low
concentrations of HF can increase fibroblast cell proliferation, and high concentrations
can reduce fibroblast cell proliferation and reduce the rate of bone mineralization. In
this case, the Ti surface exposed to a range of 0.2–1.2% HF concentration would not have
a cytotoxic effect on fibroblast cells. However, at these low concentrations, apart from
increasing fibroblast proliferation, there was also a significant increase in interleukin 6,
osteoprotegerin, and sclerostin, all of which play a role in bone formation and prevent bone
resorption [34]. This event can be explained by HF affecting the stage of cell differentiation,
which is more likely to affect osteoprogenitor cells or undifferentiated osteoblasts [35–37].

Surface properties of the material (hydrophilicity, composition, roughness, and mor-
phology) will affect cell adhesion and spread, leading to faster osseointegration and implant
stabilization [27]. Adhesion is the first step for cells to proliferate and differentiate, and
failure of adhesion will cause cells not to survive [5]. In the present study, as seen in the
FE-SEM micrographs of the cell morphology of MG-63, the Ti surface pretreated with
different concentrations of HF exhibited elongated filopodia, meaning that the cell was in
the adhesion process. The prolonged filopodia will strengthen the cell anchorage, while
the prolonged filopodia will only elongate on a surface suitable for cell growth [5]. Our
previous study has also demonstrated that the anodized Ti surface significantly increases
osteoblast adhesion and proliferation [10]. Thus, the anodized Ti with HF pretreatment can
form a nano-porous TiO2 surface to promote the bone cell ingrowth into the nano-porous
structure for enhancing biocompatibility. Finally, further investigations must be performed
to offer scientific information concerning surface properties and in vitro biocompatibility
in the presence of anodized Ti.

5. Conclusions

The nano-porous TiO2 surface could be formed on the Ti substrate surface through the
anodization with HF pretreatment method. All measured contact angles are less than 90◦,
which reveal that obtained nano-porous TiO2 surfaces are hydrophilic. The AC-Ti with 0.5%



Metals 2021, 11, 1090 8 of 9

HF sample exhibited a well-aligned nano-porous topography and higher wettability. The
cell response and adhesion behavior assessment also proved that the anodized Ti surface
with nano-porous structure possessed great potential to increase cell adhesion ability. Thus,
the research findings could provide useful scientific information in the surface modification
of Ti.
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3. Barjaktarević, D.R.; Cvijović-Alagić, I.L.; Dimić, I.D.; Ðokić, V.R.; Rakin, M.P. Anodization of Ti-based materials for biomedical
applications: A review. Metall. Mater. Eng. 2016, 22, 129–144. [CrossRef]

4. Singh, A.; Singh, B.P.; Wani, M.R.; Kumar, D.; Singh, J.K.; Singh, V. Effect of anodization on corrosion behaviour and biocompati-
bility of Cp-titanium is simulated body fluid. Bull. Mater. Sci. 2013, 36, 8. [CrossRef]

5. Chen, Z.X.; Takao, Y.; Wang, W.X.; Matsubara, T.; Ren, L.M. Surface characteristics and in vitro biocompatibility of titanium
anodized in a phosphoric acid solution at different voltages. Biomed. Mater. 2009, 4, 065003. [CrossRef]

6. Martinez, E.F.; Ishikawa, G.J.; de Lemos, A.B.; Barbosa Bezerra, F.J.; Sperandio, M.; Napimoga, M.H. Evaluation of a Titanium
Surface Treated with Hydroxyapatite Nanocrystals on Osteoblastic Cell Behavior: An In Vitro Study. Int. J. Oral Maxillofac.
Implant. 2018, 33, 597–602. [CrossRef]

7. SergiyKyrylenko, S.; Warchoł, F.; Oleshko, O.; Husak, Y.; Kazek-Kęsik, A.; Korniienko, V.; Deineka, V.; Sowa, M.; Maciej, A.;
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